Comptes Rendus
A compressibility correction of the pressure strain correlation model in turbulent flow
Comptes Rendus. Mécanique, Volume 341 (2013) no. 7, pp. 567-580.

This paper is devoted to the second-order closure for compressible turbulent flows with special attention paid to modeling the pressure–strain correlation appearing in the Reynolds stress equation. This term appears as the main one responsible for the changes of the turbulence structures that arise from structural compressibility effects. From the analysis and DNS results of Simone et al. and Sarkar, the compressibility effects on the homogeneous turbulence shear flow are parameterized by the gradient Mach number. Several experiment and DNS results suggest that the convective Mach number is appropriate to study the compressibility effects on the mixing layers. The extension of the LRR model recently proposed by Marzougui, Khlifi and Lili for the pressure–strain correlation gives results that are in disagreement with the DNS results of Sarkar for high-speed shear flows. This extension is revised to derive a turbulence model for the pressure–strain correlation in which the compressibility is included in the turbulent Mach number, the gradient Mach number and then the convective Mach number. The behavior of the proposed model is compared to the compressible model of Adumitroiae et al. for the pressure–strain correlation in two turbulent compressible flows: homogeneous shear flow and mixing layers. In compressible homogeneous shear flows, the predicted results are compared with the DNS data of Simone et al. and those of Sarkar. For low compressibility, the two compressible models are similar, but they become substantially different at high compressibilities. The proposed model shows good agreement with all cases of DNS results. Those of Adumitroiae et al. do not reflect any effect of a change in the initial value of the gradient Mach number on the Reynolds stress anisotropy. The models are used to simulate compressible mixing layers. Comparison of our predictions with those of Adumitroiae et al. and with the experimental results of Goebel et al. shows good qualitative agreement.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2013.04.003
Mots clés : Turbulence, Compressible, Pressure strain, Homogeneous, Mixing layers
Hechmi Klifi 1 ; Taieb Lili 1

1 Département de physique, faculté des sciences de Tunis, campus universitaire, 1060, Tunis, Tunisia
@article{CRMECA_2013__341_7_567_0,
     author = {Hechmi Klifi and Taieb Lili},
     title = {A compressibility correction of the pressure strain correlation model in turbulent flow},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {567--580},
     publisher = {Elsevier},
     volume = {341},
     number = {7},
     year = {2013},
     doi = {10.1016/j.crme.2013.04.003},
     language = {en},
}
TY  - JOUR
AU  - Hechmi Klifi
AU  - Taieb Lili
TI  - A compressibility correction of the pressure strain correlation model in turbulent flow
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 567
EP  - 580
VL  - 341
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2013.04.003
LA  - en
ID  - CRMECA_2013__341_7_567_0
ER  - 
%0 Journal Article
%A Hechmi Klifi
%A Taieb Lili
%T A compressibility correction of the pressure strain correlation model in turbulent flow
%J Comptes Rendus. Mécanique
%D 2013
%P 567-580
%V 341
%N 7
%I Elsevier
%R 10.1016/j.crme.2013.04.003
%G en
%F CRMECA_2013__341_7_567_0
Hechmi Klifi; Taieb Lili. A compressibility correction of the pressure strain correlation model in turbulent flow. Comptes Rendus. Mécanique, Volume 341 (2013) no. 7, pp. 567-580. doi : 10.1016/j.crme.2013.04.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.04.003/

[1] O. Zeman Dilatation dissipation, the concept and application in modeling compressible mixing layers, Phys. Fluids A, Volume 2 (1990), p. 178

[2] S. Sarkar; G. Erlebacher; M.Y. Hussaini; H.O. Kreiss The analysis and modeling of dilatational terms in compressible turbulence, J. Fluid Mech., Volume 227 (1991), p. 473

[3] A. Simone; G.N. Coleman; C. Cambon The effect of compressibility on turbulent shear flow: a rapid distorsion-theory and direct numerical simulation study, J. Fluid Mech., Volume 330 (1997), pp. 307-338

[4] S. Sarkar The stabilizing effects of compressibility in turbulent shear flow, J. Fluid Mech., Volume 282 (1995), p. 163

[5] F. Hamba Effects of pressure fluctuations on turbulence growth compressible homogeneous shear flow, Phys. Fluids A, Volume 6 (1999), p. 1625

[6] A.W. Vreman; N.D. Sandham; K.H. Luo Compressible mixing layer growth rate and turbulence characteristics, J. Fluid Mech. (1996), pp. 320-325

[7] C. Pantano; S. Sarkar A study of compressibility effects in the high-speed turbulent shear layer using direct simulation, J. Fluid Mech., Volume 451 (2002), pp. 329-371

[8] H. Marzougui; H. Khlifi; T. Lili Extension of the Launder, Reece and Rodi on compressible homogeneous shear flow, Eur. Phys. J. B, Volume 45 (2005), pp. 147-154

[9] B.E. Launder; G.J. Reece; W. Rodi Progress in the development of a Reynolds-stress turbulence closure, J. Fluid Mech., Volume 68 (1975), p. 537

[10] S.G. Goebel; J.C. Dutton Experimental study of compressible turbulent mixing layers, AIAA J., Volume 29 (1981), p. 538

[11] V. Adumitroiae; J.R. Risrorcelli; D.B. Taulbee Progress in Favre Reynolds stress closures for compressible flows, Phys. Fluids A, Volume 9 (1999), p. 2696

[12] C.H. Park; S.O. Park A compressible turbulence model for the pressure–strain correlation, J. Turbul., Volume 6 (2005) no. 2, pp. 1-25

[13] H. Fujiwara; C. Arakawa Modeling of compressible turbulent flows with emphasis on pressure–dilatation correlation, Eng. Turbulence Model. Exp., Volume 3 (1996), p. 151

[14] S. Heinz Statistical Mechanics of Turbulent Flows, Springer Verlag, Berlin, 2003

[15] S. Sarkar The pressure–dilatation correlation in compressible flows, Phys. Fluids A, Volume 4 (1992), p. 2674

[16] C.G. Speziale; R. Abid; N. Mansour Evaluation of Reynolds-stress turbulence closures in compressible homogeneous shear flow, ZAMPS, Volume 17 (1985)

[17] C.G. Speziale; S. Sarkar Second-order closure models for supersonic turbulent flows, 1991 (NASA Langley Research Center. Hampton, ICASE Report 91-9)

[18] P.E. Dimotakis Turbulent free shear layer mixing and combustion (S.N.B. Murthy; E.T. Curran, eds.), Progress in Astronautics and Aeronautics, vol. 137, AIAA, Washington, DC, 1991

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A priori evaluation of the Pantano and Sarkar model in compressible homogeneous shear flows

Hechmi Khlifi; J. Abdallah; H. Aïcha; ...

C. R. Méca (2011)


A propos d'un modèle de relaxation pour des écoulements turbulents hors équilibre

F. Radhia; Hamed Marzougui; Z. Jihene; ...

C. R. Méca (2010)


Turbulence modeling and simulation advances in CFD during the past 50 years

Roland Schiestel; Bruno Chaouat

C. R. Méca (2022)