A procedure aimed at developing a fast-running method for blast-wave effects characterization behind a protection barrier is presented. Small-scale experiments of a hemispherical gaseous charge (stoichiometric propane–oxygen mixture) without and with a prismatic protective barrier are used to validate the use of an in-house CFD code for gaseous detonation. From numerical experiments, pressure loss of a blast wave at a corner is quantified. These fits, in conjunction with TM5-1300 reflection charts, are used to estimate the maximum overpressure around a protective barrier through geometrical and empirical laws. The results show good agreement with numerical and experimental data from the ANR-BARPPRO research project.
Accepted:
Published online:
Sébastien Éveillard 1, 2; Nicolas Lardjane 1; Jean-Yves Vinçont 1; Isabelle Sochet 2
@article{CRMECA_2013__341_8_625_0, author = {S\'ebastien \'Eveillard and Nicolas Lardjane and Jean-Yves Vin\c{c}ont and Isabelle Sochet}, title = {Towards a fast-running method for blast-wave mitigation by a prismatic blast wall}, journal = {Comptes Rendus. M\'ecanique}, pages = {625--635}, publisher = {Elsevier}, volume = {341}, number = {8}, year = {2013}, doi = {10.1016/j.crme.2013.06.004}, language = {en}, }
TY - JOUR AU - Sébastien Éveillard AU - Nicolas Lardjane AU - Jean-Yves Vinçont AU - Isabelle Sochet TI - Towards a fast-running method for blast-wave mitigation by a prismatic blast wall JO - Comptes Rendus. Mécanique PY - 2013 SP - 625 EP - 635 VL - 341 IS - 8 PB - Elsevier DO - 10.1016/j.crme.2013.06.004 LA - en ID - CRMECA_2013__341_8_625_0 ER -
%0 Journal Article %A Sébastien Éveillard %A Nicolas Lardjane %A Jean-Yves Vinçont %A Isabelle Sochet %T Towards a fast-running method for blast-wave mitigation by a prismatic blast wall %J Comptes Rendus. Mécanique %D 2013 %P 625-635 %V 341 %N 8 %I Elsevier %R 10.1016/j.crme.2013.06.004 %G en %F CRMECA_2013__341_8_625_0
Sébastien Éveillard; Nicolas Lardjane; Jean-Yves Vinçont; Isabelle Sochet. Towards a fast-running method for blast-wave mitigation by a prismatic blast wall. Comptes Rendus. Mécanique, Volume 341 (2013) no. 8, pp. 625-635. doi : 10.1016/j.crme.2013.06.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.06.004/
[1] Shock and blast waves mitigation, Shock Waves, Volume 23 (2013), pp. 1-4
[2] A review of methods for predicting bomb blast effects on buildings, J. Battlefield Technol., Volume 6 (2003) no. 3, pp. 5-10
[3] GBPP, Guide SFEPA n°9, Guide des bonnes pratiques en pyrotechnie, 2009.
[4] Explosive Shocks in the Air, Springer-Verlag, Berlin, 1985
[5] Article 11 of the Decree of 20 April 2007 and the circular DPPR/SEI2/IH-07-0111 of the French regulation.
[6] Dimensioning physical protection barricades against the propagation of pressure waves following a detonation http://www.agence-nationale-recherche.fr/Colloques/WISG2013/presentations/AAP10_BARPPRO.pdf (in: 13th Interdisciplinary Workshop on Global Security, 22–23rd January 2013, Troyes, France, available online)
[7] Prediction of airblast loads on structures behind a protective barrier, Int. J. Impact Eng., Volume 35 (2007), pp. 363-375
[8] Predicting the effectiveness of blast wall barriers using neural networks, Int. J. Impact Eng., Volume 34 (2007), pp. 1907-1923
[9] Microcomputer Programs CONWEP and FUNPRO, Applications of TM 5-855-1, Fundamentals of Protective Design for Conventional Weapons (Userʼs Guide), 1987 (Final report)
[10] Blast Waves, Springer-Verlag, New York, USA, 2010
[11] Towards the modeling of blast loads on structures, University of Toronto, Canada, 2004 (Thesis for Degree of Master of Applied Science)
[12] Impact de fortes explosions sur les bâtiments représentatifs dʼune installation industrielle, University of Orléans, France, 2006 (PhD Thesis)
[13] HERA: A hydrodynamic AMR platform for multi-physics simulations, Adaptive Mesh Refinement – Theory and Applications, Lect. Notes Comput. Sci. Eng., vol. 41, part III, 2005, pp. 283-294
[14] http://www-hpc.cea.fr/fr/complexe/tera.htm (Tera100)
[15] Numerical predictions of blast waves caused by accidental or intentional detonations of gaseous and condensed explosives in 3D complex geometries, Proc. 5th Int. Symp. on Tunnel Safety and Security, New York, USA, 2012, pp. 767-768
[16] Improvements of the CARTE thermochemical code dedicated to the computation of properties of explosives, J. Phys. Chem. B, Volume 115 (2011), p. 12868
[17] Shock Wave Reflection Phenomena, Springer, 1991
[18] Structures to Resist the Effects of Accidental Explosions, Departments of the Army, Navy and Air Force, Washington, D.C., 2008 (Army TM 5-1300, Navy NAVFAC P-397, AFR 88-22)
[19] et al. Small-scale modeling of explosive blasts in urban scenarios, April 19–23, Adelaide, Australia (2004) http://hsrlab.gatech.edu/AUTODYN/papers/paper159.pdf (available online)
[20] Explosions in Air, University of Texas Press, Austin, TX, USA, 1973
Cited by Sources:
Comments - Policy