On étudie une roue, soumise aux frottements exercés par le sol et par un système de freinage. Un formalisme utilisant des opérateurs multivoques permet dʼécrire les lois de comportement de cette roue sous la forme dʼune inclusion différentielle dont lʼunique solution peut être approchée par un schéma dʼEuler implicite. On peut associer un châssis à une, deux ou quatre de ces roues, en obtenant une inclusion différentielle de même type que la précédente. De façon plus générale, de nombreuses applications peuvent être proposées dans le domaine de la dynamique non linéaire des véhicules à roues.
We study a wheel submitted to friction forces exerted by the ground and by a brake system. A formalism using multivalued operators allows us to write the constitutive laws of the wheel as a differential inclusion, whose unique solution can be approximated by a numerical scheme. We can connect a chassis with one, two or four of these wheels, by obtaining a differential inclusion of the same kind as the previous one. More generally, many applications can be offered in the field of nonlinear dynamics of wheeled vehicles.
Accepté le :
Publié le :
Keywords: Friction, Brake, Motor, Friction law, Nonlinear dynamics
Jérôme Bastien 1
@article{CRMECA_2013__341_9-10_653_0, author = {J\'er\^ome Bastien}, title = {Description multivoque d'une roue frein\'ee et applications \`a la dynamique de v\'ehicules \`a roues}, journal = {Comptes Rendus. M\'ecanique}, pages = {653--658}, publisher = {Elsevier}, volume = {341}, number = {9-10}, year = {2013}, doi = {10.1016/j.crme.2013.09.003}, language = {fr}, }
Jérôme Bastien. Description multivoque dʼune roue freinée et applications à la dynamique de véhicules à roues. Comptes Rendus. Mécanique, Volume 341 (2013) no. 9-10, pp. 653-658. doi : 10.1016/j.crme.2013.09.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.09.003/
[1] J. Bastien, Study of a driven and braked wheel using maximal monotone differential inclusions, Applications to the nonlinear dynamics of wheeled vehicles, 2013, soumis.
[2] Dynamique du freinage, Collection des sciences appliquées de lʼINSA de Lyon, Presses polytechniques et universitaires romandes, 2009
[3] Dynamique du véhicule, Collection des sciences appliquées de lʼINSA de Lyon, Presses polytechniques et universitaires romandes, 2006
[4] Nonlinear Dynamics of a Wheeled Vehicle, Advances in Mechanics and Mathematics, vol. 10, Springer, 2005
[5] Modelling complex vehicle systems using bond graphs, J. Franklin Inst., Volume 319 (1985) no. 1–2, pp. 67-81 http://www.sciencedirect.com/science/article/pii/0016003285900651
[6] Study of some rheological models with a finite number of degrees of freedom, Eur. J. Mech. A, Solids, Volume 19 (2000) no. 2, pp. 277-307 | DOI
[7] Numerical precision for differential inclusions with uniqueness, Modél. Math. Anal. Numér., Volume 36 (2002) no. 3, pp. 427-460 | DOI
[8] Persozʼs gephyroidal model described by a maximal monotone differential inclusion, Arch. Appl. Mech., Volume 78 (2008) no. 5, pp. 393-407 | DOI
[9] Convergence order of implicit Euler numerical scheme for maximal monotone differential inclusions, Z. Angew. Math. Phys., Volume 64 (2013), pp. 955-966 | DOI
[10] Systèmes dynamiques discrets non réguliers déterministes ou stochastiques, Collection Mécanique des structures, Hermès Science Publications, 2012 http://www.lavoisier.fr/livre/h3908.html Ouvrage traduit en anglais (voir [11]). Voir
[11] Non Smooth Deterministic or Stochastic Discrete Dynamical Systems, Wiley–ISTE, 2013 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1848215258.html (Traduction en anglais de [10]. Voir)
[12] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Notas de Matemática (50), North-Holland Mathematics Studies, vol. 5, North-Holland Publishing Co., Amsterdam, 1973
[13] Multivalued Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, vol. 1, Walter de Gruyter & Co., Berlin, 1992 | DOI
[14] Dynamic stability of finite-dimensional linearly elastic systems with unilateral contact and Coulomb friction, Comput. Methods Appl. Mech. Eng., Volume 177 (1999) no. 3–4, pp. 289-328 | DOI
[15] The non-smooth contact dynamics method, Comput. Methods Appl. Mech. Eng., Volume 177 (1999) no. 3–4, pp. 235-257 | DOI
[16] Error estimates for discretized differential inclusion, Computing, Volume 41 (1989) no. 4, pp. 349-358 | DOI
[17] Difference methods for differential inclusions: a survey, SIAM Rev., Volume 34 (1992) no. 2, pp. 263-294 | DOI
[18] Discrete approximations of differential inclusions, Bayreuth. Math. Schr., Volume 54 (1998), pp. 149-232
[19] Second-order discrete approximation to linear differential inclusions, SIAM J. Numer. Anal., Volume 29 (1992) no. 2, pp. 439-451 | DOI
[20] Existence and uniqueness for dynamical unilateral contact with Coulomb friction: a model problem, Modél. Math. Anal. Numér., Volume 39 (2005) no. 1, pp. 59-77 | DOI
[21] Example of non-uniqueness and non-existence of solutions to quasistatic contact problems, Ing.-Archiv (1990), pp. 529-541
[22] E. Bakker, L. Nybord, H. Pacejka, Tyre modelling for use in vehicle dynamics studies, SAE 870421, 1987.
[23] H. Pacejka, E. Bakker, L. Lidner, A new tyre model with an application in vehicle dynamics studies, SAE Technical Paper 890087, 1989.
[24] The tyre as a vehicle component, Prague, République Tchéque (1996)
[25] Tyre and Vehicle Dynamics, SAE International, Butterworth-Heinemann, Oxford, 2006
Cité par Sources :
Commentaires - Politique