Comptes Rendus
Wavelength selection of ripples in a vertically vibrating dynamically thick granular layer due to density-wave refraction
Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 52-62.

A numerical study was made on the wavelength selection mechanism of the ripples observed on the surface of a granular layer that is oscillated vertically. Multiple collisions of the one-dimensional array of beads show a time-dependent particle distribution, which induces a density wave. The magnitude of the wave velocity is estimated by the theory of elasticity, which reveals the refraction of the density wave in a quasi-two-dimensional granular layer. Our theory explains how the vertical excitation of particles determines the horizontal characteristic scale on the surface, or the wavelength of the ripples, which is applicable even to the saturation regime of a dynamically thick granular layer, e.g., the one that is thick enough to allow an immobilized region in the lower part.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2013.10.006
Mots clés : Granular material, Dynamically thick layer, Density wave, Refraction, Wavelength, Solid–fluid transition

Osamu Sano 1

1 Department of Applied Physics, Tokyo University of Agriculture & Technology, Tokyo 184-8588, Japan
@article{CRMECA_2014__342_1_52_0,
     author = {Osamu Sano},
     title = {Wavelength selection of ripples in a vertically vibrating dynamically thick granular layer due to density-wave refraction},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {52--62},
     publisher = {Elsevier},
     volume = {342},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crme.2013.10.006},
     language = {en},
}
TY  - JOUR
AU  - Osamu Sano
TI  - Wavelength selection of ripples in a vertically vibrating dynamically thick granular layer due to density-wave refraction
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 52
EP  - 62
VL  - 342
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2013.10.006
LA  - en
ID  - CRMECA_2014__342_1_52_0
ER  - 
%0 Journal Article
%A Osamu Sano
%T Wavelength selection of ripples in a vertically vibrating dynamically thick granular layer due to density-wave refraction
%J Comptes Rendus. Mécanique
%D 2014
%P 52-62
%V 342
%N 1
%I Elsevier
%R 10.1016/j.crme.2013.10.006
%G en
%F CRMECA_2014__342_1_52_0
Osamu Sano. Wavelength selection of ripples in a vertically vibrating dynamically thick granular layer due to density-wave refraction. Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 52-62. doi : 10.1016/j.crme.2013.10.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.10.006/

[1] M. Faraday On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces, Philos. Trans. R. Soc. Lond., Volume 121 (1831), p. 299

[2] H.M. Jaeger; S.R. Nagel Physics of the granular state, Science, Volume 255 (1992), p. 1523

[3] H.M. Jaeger; S.R. Nagel; R.P. Behringer Granular solids, liquids, and gases, Rev. Mod. Phys., Volume 68 (1996), p. 1259

[4] M.C. Cross; P.C. Hohenberg Pattern formation outside of equilibrium, Rev. Mod. Phys., Volume 65 (1993), p. 851

[5] I.S. Aranson; L.S. Tsimring Patterns and collective behavior in granular media: Theoretical concepts, Rev. Mod. Phys., Volume 78 (2006), p. 641

[6] S. Douady; S. Fauve; C. Laroche Subharmonic instabilities and defects in a granular layer under vertical vibrations, Europhys. Lett., Volume 8 (1989), pp. 621-627

[7] A. Goldshtein; M. Shapiro; L. Moldavsky; M. Fichman Mechanics of collisional motion of granular materials. Part 2. Wave propagation through vibrofluidized granular layers, J. Fluid Mech., Volume 287 (1995), pp. 349-382

[8] Y. Lan; A.D. Rosato Convection related phenomena in granular dynamics simulations of vibrated beds, Phys. Fluids, Volume 9 (1997), pp. 3615-3624

[9] K.A. Aoki; T. Akiyama; K. Yamamoto; T. Yoshikawa Experimental study on the mechanism of convection modes in vibrated granular beds, Europhys. Lett., Volume 40 (1997), pp. 159-164

[10] A. Ugawa; O. Sano Undulation of a thin granular layer induced by vertical vibration, J. Phys. Soc. Jpn., Volume 72 (2003), pp. 1390-1395

[11] K. Kanai; A. Ugawa; O. Sano Experiment on vibration-induced pattern formation of a vertically thin granular layer, J. Phys. Soc. Jpn., Volume 74 (2005), pp. 1457-1463

[12] O. Sano Dilatancy, buckling, and undulations on a vertically vibrating granular layer, Phys. Rev. E, Volume 72 (2005) (051302-1-7)

[13] P. Eshuis; Ko van der Weele; Devaraj van der Meer; R. Bos; D. Lohse Phase diagram of vertically shaken granular matter, Phys. Fluids, Volume 19 (2007) (123301-1-11)

[14] F. Melo; P. Umbanhowar; H.L. Swinney Transition to parametric wave patterns in a vertically oscillated granular layer, Phys. Rev. Lett., Volume 72 (1994), pp. 172-175

[15] E. Clément; L. Vanel; J. Rajchenbach; J. Duran Pattern formation in a vibrated granular layer, Phys. Rev. E, Volume 53 (1996), pp. 2972-2975

[16] S. Luding; E. Clément; J. Rajchenbach; J. Duran Simulations of pattern formation in vibrated granular media, Europhys. Lett., Volume 36 (1996), pp. 247-252

[17] K.M. Aoki; T. Akiyama Spontaneous wave pattern formation in vibrated granular materials, Phys. Rev. Lett., Volume 77 (1996), pp. 4166-4169

[18] E. Clément; L. Labous Pattern formation in a vibrated granular layer: The pattern selection issue, Phys. Rev. E, Volume 62 (2000), pp. 8314-8323

[19] A. Ugawa; O. Sano Dispersion relation of standing waves on a vertically oscillated thin granular layer, J. Phys. Soc. Jpn., Volume 71 (2002), pp. 2815-2819

[20] F. Melo; P.B. Umbanhowar; H.L. Swinney Hexagons, kinks, and disorder in oscillated granular layers, Phys. Rev. Lett., Volume 75 (1995), pp. 3838-3841

[21] P.B. Umbanhowar; F. Melo; H.L. Swinney Localized excitations in a vertically vibrated granular layer, Nature, Volume 382 (1996), pp. 793-796

[22] T.H. Metcalf; J.B. Knight; H. Jaeger Standing wave patterns in shallow beds of vibrated granular material, Physica A, Volume 236 (1997), pp. 202-210

[23] C. Bizon; M.D. Shattuck; J.B. Swift; W.D. McCormick; H.L. Swinney Patterns in 3D vertically oscillated granular layers: simulation and experiment, Phys. Rev. Lett., Volume 80 (1998), pp. 57-60

[24] O. Sano; A. Ugawa; K. Suzuki Pattern formation on the vertically vibrated granular layer, Forma, Volume 14 (1999), pp. 321-329

[25] P.B. Umbanhowar; F. Melo; H.L. Swinney Periodic, aperiodic, and transient patterns in vibrated granular layers, Physica A, Volume 249 (2000), pp. 1-9

[26] P.B. Umbanhowar; H.L. Swinney Wavelength scaling and square/stripe and grain mobility transitions in vertically oscillated granular layers, Physica A, Volume 288 (2000), pp. 344-362

[27] L.S. Tsimring; I.S. Aranson Localized and cellular patterns in a vibrated granular layer, Phys. Rev. Lett., Volume 79 (1997), p. 213

[28] E. Cerda; F. Melo; S. Rica Model for subharmonic waves in granular materials, Phys. Rev. Lett., Volume 79 (1997), pp. 4570-4573

[29] D. Blair; I.S. Aranson; G.W. Crabtree; V. Vinokur; L.S. Tsimring; C. Josserand Patterns in thin vibrated granular layers: Interfaces, hexagons, and superoscillons, Phys. Rev. E, Volume 61 (2000), p. 5600

[30] J. Bougie; J. Kreft; J.B. Swift; H.L. Swinney Onset of patterns in an oscillated granular layers: Continuum and molecular dynamic simulations, Phys. Rev. E, Volume 71 (2005) (021301-1-9)

[31] C. Bizon; M.D. Shattuck; J.B. Swift Linear stability analysis of a vertically oscillated granular layer, Phys. Rev. E, Volume 60 (1999), p. 7210

[32] J.D. Goddard; A.K. Didwania A fluid-like model of vibrated granular layers: Linear stability, kinks, and oscillons, Mech. Mater., Volume 41 (2009), pp. 637-651

[33] E.C. Rericha; C. Bizon; M.D. Shattuck; H.L. Swinney Shocks in supersonic sand, Phys. Rev. Lett., Volume 88 (2002) (014302-1-4)

[34] J. Bougie; S.-J. Moon; J.B. Swift; H.L. Swinney Shocks in vertically oscillated granular layers, Phys. Rev. E, Volume 66 (2002) (051301-1-9)

[35] K. Huang; G. Miao; P. Zhang; Y. Yun; R. Wei Shock wave propagation in vibrofluidized granular materials, Phys. Rev. E, Volume 73 (2006) (041302-1-5)

[36] S.-J. Moon; M.D. Shattuck; C. Bizon; D.I. Goldman; J.B. Swift; H.L. Swinney Phase bubbles and spatiotemporal chaos in granular patterns, Phys. Rev. E, Volume 65 (2002) (011301-1-10)

[37] S.-J. Moon; D.I. Goldman; J.B. Swift; H.L. Swinney Kink-induced transport and segregation in oscillated granular layers, Phys. Rev. Lett., Volume 91 (2003) (134301-1-4)

[38] N. Mujica; F. Melo Solid–liquid transition and hydrodynamic surface waves in vibrated granular layers, Phys. Rev. Lett., Volume 80 (1998), pp. 5121-5124

[39] M.D. Sinnott; P.W. Cleary Vibration-induced arching in a deep granular bed, Granul. Matter, Volume 11 (2009), pp. 345-364

[40] O. Sano; A. Takei A density wave in a vertically vibrating granular layer and the occurrence of spikes and ripples on its surface, AIP Conf. Proc., Volume 1145 (2009), pp. 729-732

[41] O. Sano Solid–fluid transition and the formation of ripples in vertically oscillated granular layers, AIP Conf. Proc., Volume 1227 (2010), pp. 100-114

[42] O. Sano Density wave as a mechanism of the formation of ripples in vertically oscillated granular layer, J. Phys. Soc. Jpn., Volume 80 (2011) (034402-1-7)

[43] O. Sano Wavelength selection mechanism of ripples in vertically vibrated thicker granular layer, J. Phys. Soc. Jpn., Volume 81 (2012) (033401-1-4)

[44] S. McNamara; W.R. Young Inelastic collapse and clumping in a one-dimensional granular medium, Phys. Fluids A, Fluid Dyn., Volume 4 (1992), pp. 496-504

[45] I. Goldhirsch; G. Zanetti Clustering instability in dissipative gases, Phys. Rev. Lett., Volume 70 (1993), pp. 1619-1622

[46] J.M. Luck; A. Mehta Bouncing ball with a finite restitution: Chattering, locking, and chaos, Phys. Rev. E, Volume 48 (1933), pp. 3988-3997

[47] S. Luding; E. Clément; A. Blumen; J. Rajchenbach; J. Duran Studies of columns of beads under external vibrations, Phys. Rev. E, Volume 49 (1994), pp. 1634-1646

[48] S. Luding; E.H.J. Herrmann; A. Blumen Simulations of two-dimensional arrays of beads under external vibrations: Scaling behavior, Phys. Rev. E, Volume 50 (1994), pp. 3100-3108

[49] B. Bernu; F. Delyon; R. Mazighi Steady states of a column of shaken inelastic beads, Phys. Rev. E, Volume 50 (1994), pp. 4551-4559

[50] L.D. Landau; E.M. Lifshitz Theory of Elasticity, Pergamon, Oxford, 1986

Cité par Sources :

The paper was presented in the mini-symposium about “Recent Advances in the Mechanics of Granular and Porous Media” at the European Solid Mechanics Conference 2012 in Graz, Austria. The guest editors of this Mini-Symposium are Erich Bauer, Robert P. Behringer, Félix Darve and Lou Kondic.

Commentaires - Politique