Comptes Rendus
Trends and perspectives in solid-state wetting / Mouillage solide–solide : tendances et perspectives
One-dimensional Ge nanostructures on Si(001) and Si(1 1 10): Dominant role of surface energy
[Structures unidimensionnelles de Ge sur Si(001) et Si(1 1 10) : rôle dominant de lʼénergie de surface]
Comptes Rendus. Physique, Volume 14 (2013) no. 7, pp. 542-552.

Le système Ge/Si(001) constitue un prototype pour lʼétude de lʼauto-assemblage des îlots tridimensionnels dans le cadre de la croissance Stranski–Krastanov. Plus de vingt ans de recherches on produit une quantité impressionnante de résultats, ainsi que des interprétations théoriques variées. Il est communément admis que la relaxation de la contrainte due au désaccord de maille est la force motrice dominante qui mène à la formation de ces îlots. Cependant, de nouveaux résultats sur Si(001) et sur des surfaces vicinales indiquent que, dans des conditions adaptées, ce nʼest pas le cas. En effet, nous rapportons ici des résultats expérimentaux et théoriques décrivant des nanostructures qui sont essentiellement déterminées par la minimisation de lʼénergie de surface. Ces résultats intriguent, car ils révèlent la présence de tailles magiques, et montrent la présence de morphologies très particulières, comme des fils de longueur micronique. De plus, elles mettent en évidence les différence entre les tentatives de facettage de la couche de mouillage et la formation de véritables îlots Stranski–Krastanov.

Ge/Si(001) is a prototypical system for investigating three-dimensional island self-assembly owed to the Stranski–Krastanow growth mode. More than twenty years of research have produced an impressive amount of results, together with various theoretical interpretations. It is commonly believed that lattice-mismatch strain relief is the major driving force leading to the formation of these islands. However, a set of recent results on Si(001) and vicinals point out that, under suitable conditions, this is not the case. Indeed, we here review experimental and theoretical results dealing with nanostructures mainly determined by surface-energy minimization. Results are intriguing, as they reveal the existence of magic sizes, show the presence of very peculiar morphologies, such as micron-long wires, and distinguish among attempts to facet the wetting-layer and true SK islands.

Publié le :
DOI : 10.1016/j.crhy.2013.06.003
Keywords: Self-assembly, Ge/Si, Surface energy, Heteroepitaxy, Islands, Wires
Mot clés : Auto-assemblage, Ge/Si, Énergie de surface, Hétéroépitaxie, Îlots, boîtes quantiques, Nano-fils

Francesco Montalenti 1 ; Daniele Scopece 1 ; Leo Miglio 1

1 L-NESS and Department of Materials Science, Università di Milano–Bicocca, Via R. Cozzi 53, 20125 Milano, Italy
@article{CRPHYS_2013__14_7_542_0,
     author = {Francesco Montalenti and Daniele Scopece and Leo Miglio},
     title = {One-dimensional {Ge} nanostructures on {Si(001)} and {Si(1} 1 10): {Dominant} role of surface energy},
     journal = {Comptes Rendus. Physique},
     pages = {542--552},
     publisher = {Elsevier},
     volume = {14},
     number = {7},
     year = {2013},
     doi = {10.1016/j.crhy.2013.06.003},
     language = {en},
}
TY  - JOUR
AU  - Francesco Montalenti
AU  - Daniele Scopece
AU  - Leo Miglio
TI  - One-dimensional Ge nanostructures on Si(001) and Si(1 1 10): Dominant role of surface energy
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 542
EP  - 552
VL  - 14
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.06.003
LA  - en
ID  - CRPHYS_2013__14_7_542_0
ER  - 
%0 Journal Article
%A Francesco Montalenti
%A Daniele Scopece
%A Leo Miglio
%T One-dimensional Ge nanostructures on Si(001) and Si(1 1 10): Dominant role of surface energy
%J Comptes Rendus. Physique
%D 2013
%P 542-552
%V 14
%N 7
%I Elsevier
%R 10.1016/j.crhy.2013.06.003
%G en
%F CRPHYS_2013__14_7_542_0
Francesco Montalenti; Daniele Scopece; Leo Miglio. One-dimensional Ge nanostructures on Si(001) and Si(1 1 10): Dominant role of surface energy. Comptes Rendus. Physique, Volume 14 (2013) no. 7, pp. 542-552. doi : 10.1016/j.crhy.2013.06.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.06.003/

[1] Y.W. Mo; D.E. Savage; B.S. Swartzentruber; Max G. Lagally Kinetic pathway in SK growth of Ge on Si(001), Phys. Rev. Lett., Volume 65 (1990), p. 1020

[2] D.J. Eaglesham; M. Cerullo Dislocation-free SK growth of Ge on Si(001), Phys. Rev. Lett., Volume 64 (1990), p. 1943

[3] L. Wang; P. Kratzer; M. Scheffler Energetics of InAs thin films and islands on the GaAs(001) substrate, Jpn. J. Appl. Phys., Volume 39 (2000), p. 4298

[4] P. Kratzer; E. Penev; M. Scheffler Understanding the growth mechanisms of GaAs and InGaAs thin films by employing first-principles calculations, Appl. Surf. Sci., Volume 216 (2003), p. 436

[5] J.V. Barth; G. Costantini; K. Kern Engineering atomic and molecular nanostructures at surfaces, Nature, Volume 437 (2005), p. 671

[6] G. Costantini; A. Rastelli; C. Manzano; P. Acosta-Diaz; G. Katsaros; R. Songmuang; O.G. Schmidt; H.V. Kanel; K. Kern Pyramids and domes in the InAs/GaAs(0 0 1) and Ge/Si(0 0 1) systems, J. Cryst. Growth, Volume 278 (2005), p. 38

[7] G. Costantini; A. Rastelli; C. Manzano; R. Songmuang; O.G. Schmidt; K. Kern Universal shapes of self-organized semiconductor quantum dots: Striking similarities between InAs/GaAs(001) and Ge/Si(001), Appl. Phys. Lett., Volume 85 (2004), p. 5673

[8] V.A. Shchukin; D. Bimberg Spontaneous ordering of nanostructures on crystal surfaces, Rev. Mod. Phys., Volume 71 (1999), p. 1125

[9] C. Teichert Growth and self-organization of SiGe nanostructures, Phys. Rep., Volume 365 (2002), p. 335

[10] J. Stangl; V. Holy; G. Bauer Structural properties of self-organized semiconductor nanostructures, Rev. Mod. Phys., Volume 76 (2004), p. 725

[11] I. Berbezier; A. Ronda SiGe nanostructures, Surf. Sci. Rep., Volume 64 ( February 2009 ), p. 47

[12] L. Miglio; F. Montalenti Silicon–Germanium (SiGe) Nanostructures: Production, Properties, and Applications in Electronics (Y. Shiraki; N. Usami, eds.), Woodhead Publishing Limited, Cambridge, 2011 (Chapter 10)

[13] J.-N. Aqua; I. Berbezier; L. Favre; T. Frisch; A. Ronda Growth and self-organization of SiGe nanostructures, Phys. Rep., Volume 522 (2013), p. 59

[14] R. Gatti; F. Pezzoli; F. Boioli; F. Montalenti; L. Miglio Assessing the composition of hetero-epitaxial islands via morphological analysis: an analytical model matching GeSi/Si(001) data, J. Phys. Condens. Matter, Volume 24 (2012), p. 104018

[15] M. Stoffel; A. Rastelli; J. Tersoff; T. Merdzhanova; O.G. Schmidt Local equilibrium and global relaxation of strained SiGe/Si(001) layers, Phys. Rev. B, Volume 74 (2006), p. 155326

[16] J. Tersoff; B.J. Spencer; A. Rastelli; H. von Känel Barrierless formation and faceting of SiGe islands on Si(001), Phys. Rev. Lett., Volume 89 (2002), p. 196104

[17] M.R. Mckay; J.A. Venables; J. Drucker Kinetically suppressed Ostwald ripening of Ge/Si(100) hut clusters, Phys. Rev. Lett., Volume 101 (2008), p. 216104

[18] A. Rastelli; H. von Känel Surface evolution of faceted islands, Surf. Sci. Lett., Volume 515 (2002), p. L493

[19] G. Medeiros-Ribeiro; A.M. Bratkovski; T.I. Kamins; D.A.A. Ohlberg; R. Stanley Williams Shape transition of germanium nanocrystals on a silicon (001) surface from pyramids to domes, Science, Volume 279 (1998), p. 353

[20] M. Brehm; H. Lichtenberger; T. Fromherz; G. Springholz Ultra-steep side facets in multi-faceted SiGe/Si(001) Stranski–Krastanow islands, Nanoscale Res. Lett., Volume 6 (2011), p. 70

[21] D.B. Migas; P. Raiteri; L. Miglio; A. Rastelli; H. von Känel Evolution of the Ge/Si(001) wetting layer during Si overgrowth and crossover between thermodynamic and kinetic behavior, Phys. Rev. B, Volume 69 (2004), p. 235318

[22] J. Tersoff Missing dimers and strain relief in Ge films on Si(001), Phys. Rev. B Rapid Commun., Volume 45 (1992), p. 8833

[23] P. Müller; R. Kern The physical origin of the two-dimensional towards three-dimensional coherent epitaxial Stranski–Krastanov transition, Appl. Surf. Sci., Volume 102 (1996), p. 6

[24] K. Li; D.R. Bowler; M.J. Gillan Tight binding studies of strained Ge/Si(001) growth, Surf. Sci., Volume 526 (2003), p. 356

[25] A. Rastelli; H. von Känel; G. Albini; P. Raiteri; D.B. Migas; L. Miglio Morphological and compositional evolution of the Ge/Si(001) surface during exposure to a Si flux, Phys. Rev. Lett., Volume 90 (2003), p. 216104

[26] A. Rastelli; H. von Känel; G. Albini; P. Raiteri; D.B. Migas; L. Miglio Erratum: Morphological and compositional evolution of the Ge/Si(001) surface during exposure to a Si flux [Phys. Rev. Lett. 90, 216104 (2003)], Phys. Rev. Lett., Volume 91 (2003), p. 229901

[27] D. Scopece; F. Montalenti; M.J. Beck Stability of Ge on Si (1 1 10) surfaces and the role of dimer tilting, Phys. Rev. B, Volume 85 (2012), p. 085312

[28] M. Brehm; F. Montalenti; M. Grydlik; G. Vastola; H. Lichtenberger; N. Hrauda; M.J. Beck; T. Fromherz; F. Schäffler; L. Miglio; G. Bauer Key role of the wetting layer in revealing the hidden path of Ge/Si(001) Stranski–Krastanow growth onset, Phys. Rev. B, Volume 80 (2009), p. 205321

[29] F.K. LeGoues; M.C. Reuter; J. Tersoff; M. Hammar; R.M. Tromp Cyclic growth of strain-relaxed islands, Phys. Rev. Lett., Volume 73 (1994), p. 300

[30] A. Marzegalli; V.A. Zinovyev; F. Montalenti; A. Rastelli; M. Stoffel; T. Merdzhanova; O.G. Schmidt; L. Miglio Critical shape and size for dislocation nucleation in Si1xGex islands on Si(001), Phys. Rev. Lett., Volume 99 (2007), p. 235505

[31] R. Gatti; A. Marzegalli; V.A. Zinovyev; F. Montalenti; L. Miglio Modeling the plastic relaxation onset in realistic SiGe islands on Si(001), Phys. Rev. B, Volume 78 (2008), p. 184104

[32] Z. Zhong; W. Schwinger; F. Schäffler; G. Bauer; G. Vastola; F. Montalenti; L. Miglio Delayed plastic relaxation on patterned Si substrates: Coherent SiGe pyramids with dominant {111} facets, Phys. Rev. Lett., Volume 98 (2007), p. 176102

[33] G. Medeiros-Ribeiro; R. Stanley Williams Thermodynamics of coherently-strained GexSi1x nanocrystals on Si(001): Alloy composition and island formation, Nano Lett., Volume 7 (2007), p. 156101

[34] N.V. Medhekar; V. Hegadekatte; V.B. Shenoy Composition maps in self-assembled alloy quantum dots, Phys. Rev. Lett., Volume 100 (2008), p. 106104

[35] R. Gatti; F. Uhlik; F. Montalenti Intermixing in heteroepitaxial islands: fast, self-consistent calculation of the concentration profile minimizing the elastic energy, New J. Phys., Volume 10 (2008), p. 083039

[36] F. Uhlik; R. Gatti; F. Montalenti A fast computational method for determining equilibrium concentration profiles in intermixed nanoislands, J. Phys. Condens. Matter, Volume 21 (2009), p. 084217

[37] B.P. Uberuaga; M. Leskovar; A.P. Smith; H. Jonsson; M. Olmstead Diffusion of Ge below the Si(100) surface: theory and experiment, Phys. Rev. Lett., Volume 84 (2000), p. 2441

[38] M. De Seta; G. Capellini; F. Evangelisti Alloying in Ge(Si)/Si(001) self-assembled islands during their growth and capping: XPS and AFM study, Phys. Rev. B, Volume 77 (2008), p. 045431

[39] F. Zipoli; S. Cereda; M. Ceriotti; M. Bernasconi; L. Miglio; Francesco Montalenti First principles study of Ge/Si exchange mechanisms at the Si(001) surface, Appl. Phys. Lett., Volume 92 (2008), p. 191908

[40] S. Cereda; F. Montalenti Si/Ge exchange mechanisms at the Ge(105) surface, Phys. Rev. B, Volume 81 (2010), p. 125439

[41] S.A. Chaparro; J. Drucker; Y. Zhang; D. Chandrasekhar; M.R. McCartney; D.J. Smith Strain-driven alloying in Ge/Si(100) coherent islands, Phys. Rev. Lett., Volume 83 (1999), p. 1199

[42] G. Capellini; M. De Seta; F. Evangelisti SiGe intermixing in Ge/Si(100) islands, Appl. Phys. Lett., Volume 78 (2001), p. 303

[43] J.J. Zhang; F. Montalenti; A. Rastelli; N. Hrauda; D. Scopece; H. Groiss; J. Stangl; F. Pezzoli; F. Schäffler; O.G. Schmidt; L. Miglio; G. Bauer Collective shape oscillations of SiGe islands on pit-patterned Si(001) substrates: A coherent-growth strategy enabled by self-regulated intermixing, Phys. Rev. Lett., Volume 105 (2010), p. 166102

[44] A. Rastelli; M. Stoffel; A. Malachias; T. Merdzhanova; G. Katsaros; K. Kern; T.H. Metzger; O.G. Schmidt Three-dimensional composition profiles of single quantum dots determined by scanning-probe-microscopy-based nanotomography, Nano Lett., Volume 8 (2008), p. 1404

[45] J. Tersoff Kinetic surface segregation and the evolution of nanostructures, Appl. Phys. Lett., Volume 83 (2003), p. 353

[46] Y. Tu; J. Tersoff Origin of apparent critical thickness for island formation in heteroepitaxy, Phys. Rev. Lett., Volume 93 (2004) no. 21, p. 216101

[47] Y. Tu; J. Tersoff Coarsening, mixing, and motion: The complex evolution of epitaxial islands, Phys. Rev. Lett., Volume 98 (2007), p. 096103

[48] R. Bergamaschini; J. Tersoff; Y. Tu; J.J. Zhang; G. Bauer; F. Montalenti Anomalous smoothing preceding island formation during growth on patterned substrates, Phys. Rev. Lett., Volume 109 (2012), p. 156101

[49] J. Aqua; T. Frisch Influence of surface energy anisotropy on the dynamics of quantum dot growth, Phys. Rev. B, Volume 82 (2010), p. 085322

[50] P. Liu; Y.W. Zhang; C. Lu Three-dimensional finite-element simulations of the self-organized growth of quantum dot superlattices, Phys. Rev. B, Volume 68 (2003), p. 195314

[51] G. Vastola; V.B. Shenoy; J. Guo; Y. Zhang Coupled evolution of composition and morphology in a faceted three-dimensional quantum dot, Phys. Rev. B, Volume 84 (2011), p. 035432

[52] A. Ratz; A. Ribalta; A. Voigt Surface evolution of elastically stressed films under deposition by a diffuse interface model, J. Comput. Phys., Volume 214 (2006), p. 187

[53] M. Bollani; D. Chrastina; A. Federov; R. Sordan; A. Picco; E. Bonera Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition, Nanotechnology, Volume 91 (2010), p. 475302

[54] N. Moll; E. Pehlke Influence of surface stress on the equilibrium shape of strained quantum dots, Phys. Rev. B, Volume 58 (1998), p. 4566

[55] E. Pehlke; N. Moll; A. Kley Shape and stability of quantum dots, Appl. Phys. A, Volume 534 (1997), p. 525

[56] J.J. Zhang; G. Katsaros; F. Montalenti; D. Scopece; R.O. Rezaev; C. Mickel; B. Rellinghaus; L. Miglio; S. De Franceschi; A. Rastelli; O.G. Schmidt Monolithic growth of ultrathin Ge nanowires on Si(001), Phys. Rev. Lett., Volume 109 (2012), p. 085502

[57] D.B. Migas; S. Cereda; Francesco Montalenti; Leo Miglio Electronic and elastic contributions in the enhanced stability of Ge(1 0 5) under compressive strain, Surf. Sci., Volume 556 (2004), p. 121

[58] G.-H. Lu; M. Cuma; F. Liu First-principles study of strain stabilization of Ge(105) facet on Si(001), Phys. Rev. B, Volume 72 (2005), p. 125415

[59] O. Shklyaev; M.J. Beck; M. Asta; M.J. Miksis; P.W. Voorhees Role of strain-dependent surface energies in Ge/Si(100) island formation, Phys. Rev. Lett., Volume 94 (2005), p. 176102

[60] P. Raiteri; D.B. Migas; L. Miglio; A. Rastelli; H. von Känel Critical role of the surface reconstruction in the thermodynamic stability of {105} Ge pyramids on Si(001), Phys. Rev. Lett., Volume 88 (2002), p. 256103

[61] Y. Fujikawa; K. Akiyama; T. Nagao; T. Sakurai; M.G. Lagally; T. Hashimoto; Y. Morikawa; K. Terakura Origin of the stability of Ge(105) on Si: A new structural model and surface strain relaxation, Phys. Rev. Lett., Volume 88 (2002), p. 176101

[62] L.V. Arapkina; V.A. Yuryev An initial phase of Ge hut array formation at low temperature on Si(001), J. Appl. Phys., Volume 111 (2011), p. 094307

[63] J. Tersoff; R.M. Tromp Shape transition in growth of strained islands: Spontaneous formation of quantum wires, Phys. Rev. Lett., Volume 70 (1993), p. 2782

[64] A. Ronda; I. Berbezier; A. Pascale; A. Portavoce; F. Volpi Experimental insights into Si and SiGe growth instabilities: Influence of kinetic growth parameters and substrate orientation, Mater. Sci. Eng. B, Volume 101 (2003), p. 95

[65] I. Berbezier; A. Ronda; A. Portavoce; N. Motta Ge dots self-assembling: Surfactant mediated growth of Ge on SiGe(118) stress-induced kinetic instabilities, Appl. Phys. Lett., Volume 83 (2003), p. 4833

[66] G. Chen; B. Sanduijav; D. Matei; G. Springholz; D. Scopece; M.J. Beck; F. Montalenti; L. Miglio Formation of Ge nanoripples on vicinal Si(1 1 10): From Stranski–Krastanow seeds to a perfectly faceted wetting layer, Phys. Rev. Lett., Volume 108 (2012), p. 055503

[67] L. Persichetti; A. Sgarlata; M. Fanfoni; A. Balzarotti Shaping Ge islands on Si(001) surfaces with misorientation angle, Phys. Rev. Lett., Volume 104 (2010), p. 036104

[68] P.D. Szkutnik; A. Sgarlata; A. Balzarotti; N. Motta; A. Ronda; I. Berbezier Early stage of Ge growth on Si(001) vicinal surfaces with an 8° miscut along [110], Phys. Rev. B, Volume 75 ( January 2007 ), p. 033305

[69] C.M. Retford; M. Asta; M.J. Miksis; P.W. Voorhees; E.B. Webb Energetics of {105}-faceted Ge nanowires on Si(001): An atomistic calculation of edge contributions, Phys. Rev. B, Volume 75 (2007), p. 075311

[70] J.J. Zhang, A. Rastelli, O.G. Schmidt, D. Scopece, L. Miglio, F. Montalenti, Self-organized evolution of Ge/Si(001) into bundles of horizontal nanowires during annealing, submitted for publication.

[71] B. Sanduijav; D. Scopece; D. Matei; F. Schäffler; L. Miglio; G. Springholz One-dimensional to three-dimensional ripple-to-dome transition for SiGe on vicinal Si(1 1 10), Phys. Rev. Lett., Volume 109 (2012), p. 025505

[72] L. Persichetti; A. Sgarlata; M. Fanfoni; A. Balzarotti Ripple-to-dome transition: The growth evolution of Ge on vicinal Si(1 1 10) surface, Phys. Rev. B, Volume 82 (2010), p. 121309(R)

[73] F. Montalenti; P. Raiteri; D.B. Migas; H. von Känel; A. Rastelli; C. Manzano; G. Costantini; U. Denker; O.G. Schmidt; K. Kern; L. Miglio Atomic-scale pathway of the pyramid-to-dome transition during Ge growth on Si(001), Phys. Rev. Lett., Volume 93 (2004), p. 216102

[74] L.V. Arapkina; V.A. Yuryev Nucleation of Ge clusters at high temperatures on Ge/Si(001) wetting layer, J. Appl. Phys., Volume 109 (2012), p. 104319

Cité par Sources :

Commentaires - Politique