[Structures unidimensionnelles de Ge sur Si(001) et Si(1 1 10) : rôle dominant de lʼénergie de surface]
Le système Ge/Si(001) constitue un prototype pour lʼétude de lʼauto-assemblage des îlots tridimensionnels dans le cadre de la croissance Stranski–Krastanov. Plus de vingt ans de recherches on produit une quantité impressionnante de résultats, ainsi que des interprétations théoriques variées. Il est communément admis que la relaxation de la contrainte due au désaccord de maille est la force motrice dominante qui mène à la formation de ces îlots. Cependant, de nouveaux résultats sur Si(001) et sur des surfaces vicinales indiquent que, dans des conditions adaptées, ce nʼest pas le cas. En effet, nous rapportons ici des résultats expérimentaux et théoriques décrivant des nanostructures qui sont essentiellement déterminées par la minimisation de lʼénergie de surface. Ces résultats intriguent, car ils révèlent la présence de tailles magiques, et montrent la présence de morphologies très particulières, comme des fils de longueur micronique. De plus, elles mettent en évidence les différence entre les tentatives de facettage de la couche de mouillage et la formation de véritables îlots Stranski–Krastanov.
Ge/Si(001) is a prototypical system for investigating three-dimensional island self-assembly owed to the Stranski–Krastanow growth mode. More than twenty years of research have produced an impressive amount of results, together with various theoretical interpretations. It is commonly believed that lattice-mismatch strain relief is the major driving force leading to the formation of these islands. However, a set of recent results on Si(001) and vicinals point out that, under suitable conditions, this is not the case. Indeed, we here review experimental and theoretical results dealing with nanostructures mainly determined by surface-energy minimization. Results are intriguing, as they reveal the existence of magic sizes, show the presence of very peculiar morphologies, such as micron-long wires, and distinguish among attempts to facet the wetting-layer and true SK islands.
Mot clés : Auto-assemblage, Ge/Si, Énergie de surface, Hétéroépitaxie, Îlots, boîtes quantiques, Nano-fils
Francesco Montalenti 1 ; Daniele Scopece 1 ; Leo Miglio 1
@article{CRPHYS_2013__14_7_542_0, author = {Francesco Montalenti and Daniele Scopece and Leo Miglio}, title = {One-dimensional {Ge} nanostructures on {Si(001)} and {Si(1} 1 10): {Dominant} role of surface energy}, journal = {Comptes Rendus. Physique}, pages = {542--552}, publisher = {Elsevier}, volume = {14}, number = {7}, year = {2013}, doi = {10.1016/j.crhy.2013.06.003}, language = {en}, }
TY - JOUR AU - Francesco Montalenti AU - Daniele Scopece AU - Leo Miglio TI - One-dimensional Ge nanostructures on Si(001) and Si(1 1 10): Dominant role of surface energy JO - Comptes Rendus. Physique PY - 2013 SP - 542 EP - 552 VL - 14 IS - 7 PB - Elsevier DO - 10.1016/j.crhy.2013.06.003 LA - en ID - CRPHYS_2013__14_7_542_0 ER -
%0 Journal Article %A Francesco Montalenti %A Daniele Scopece %A Leo Miglio %T One-dimensional Ge nanostructures on Si(001) and Si(1 1 10): Dominant role of surface energy %J Comptes Rendus. Physique %D 2013 %P 542-552 %V 14 %N 7 %I Elsevier %R 10.1016/j.crhy.2013.06.003 %G en %F CRPHYS_2013__14_7_542_0
Francesco Montalenti; Daniele Scopece; Leo Miglio. One-dimensional Ge nanostructures on Si(001) and Si(1 1 10): Dominant role of surface energy. Comptes Rendus. Physique, Volume 14 (2013) no. 7, pp. 542-552. doi : 10.1016/j.crhy.2013.06.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.06.003/
[1] Kinetic pathway in SK growth of Ge on Si(001), Phys. Rev. Lett., Volume 65 (1990), p. 1020
[2] Dislocation-free SK growth of Ge on Si(001), Phys. Rev. Lett., Volume 64 (1990), p. 1943
[3] Energetics of InAs thin films and islands on the GaAs(001) substrate, Jpn. J. Appl. Phys., Volume 39 (2000), p. 4298
[4] Understanding the growth mechanisms of GaAs and InGaAs thin films by employing first-principles calculations, Appl. Surf. Sci., Volume 216 (2003), p. 436
[5] Engineering atomic and molecular nanostructures at surfaces, Nature, Volume 437 (2005), p. 671
[6] Pyramids and domes in the InAs/GaAs(0 0 1) and Ge/Si(0 0 1) systems, J. Cryst. Growth, Volume 278 (2005), p. 38
[7] Universal shapes of self-organized semiconductor quantum dots: Striking similarities between InAs/GaAs(001) and Ge/Si(001), Appl. Phys. Lett., Volume 85 (2004), p. 5673
[8] Spontaneous ordering of nanostructures on crystal surfaces, Rev. Mod. Phys., Volume 71 (1999), p. 1125
[9] Growth and self-organization of SiGe nanostructures, Phys. Rep., Volume 365 (2002), p. 335
[10] Structural properties of self-organized semiconductor nanostructures, Rev. Mod. Phys., Volume 76 (2004), p. 725
[11] SiGe nanostructures, Surf. Sci. Rep., Volume 64 ( February 2009 ), p. 47
[12] Silicon–Germanium (SiGe) Nanostructures: Production, Properties, and Applications in Electronics (Y. Shiraki; N. Usami, eds.), Woodhead Publishing Limited, Cambridge, 2011 (Chapter 10)
[13] Growth and self-organization of SiGe nanostructures, Phys. Rep., Volume 522 (2013), p. 59
[14] Assessing the composition of hetero-epitaxial islands via morphological analysis: an analytical model matching GeSi/Si(001) data, J. Phys. Condens. Matter, Volume 24 (2012), p. 104018
[15] Local equilibrium and global relaxation of strained SiGe/Si(001) layers, Phys. Rev. B, Volume 74 (2006), p. 155326
[16] Barrierless formation and faceting of SiGe islands on Si(001), Phys. Rev. Lett., Volume 89 (2002), p. 196104
[17] Kinetically suppressed Ostwald ripening of Ge/Si(100) hut clusters, Phys. Rev. Lett., Volume 101 (2008), p. 216104
[18] Surface evolution of faceted islands, Surf. Sci. Lett., Volume 515 (2002), p. L493
[19] Shape transition of germanium nanocrystals on a silicon (001) surface from pyramids to domes, Science, Volume 279 (1998), p. 353
[20] Ultra-steep side facets in multi-faceted SiGe/Si(001) Stranski–Krastanow islands, Nanoscale Res. Lett., Volume 6 (2011), p. 70
[21] Evolution of the Ge/Si(001) wetting layer during Si overgrowth and crossover between thermodynamic and kinetic behavior, Phys. Rev. B, Volume 69 (2004), p. 235318
[22] Missing dimers and strain relief in Ge films on Si(001), Phys. Rev. B Rapid Commun., Volume 45 (1992), p. 8833
[23] The physical origin of the two-dimensional towards three-dimensional coherent epitaxial Stranski–Krastanov transition, Appl. Surf. Sci., Volume 102 (1996), p. 6
[24] Tight binding studies of strained Ge/Si(001) growth, Surf. Sci., Volume 526 (2003), p. 356
[25] Morphological and compositional evolution of the Ge/Si(001) surface during exposure to a Si flux, Phys. Rev. Lett., Volume 90 (2003), p. 216104
[26] Erratum: Morphological and compositional evolution of the Ge/Si(001) surface during exposure to a Si flux [Phys. Rev. Lett. 90, 216104 (2003)], Phys. Rev. Lett., Volume 91 (2003), p. 229901
[27] Stability of Ge on Si (1 1 10) surfaces and the role of dimer tilting, Phys. Rev. B, Volume 85 (2012), p. 085312
[28] Key role of the wetting layer in revealing the hidden path of Ge/Si(001) Stranski–Krastanow growth onset, Phys. Rev. B, Volume 80 (2009), p. 205321
[29] Cyclic growth of strain-relaxed islands, Phys. Rev. Lett., Volume 73 (1994), p. 300
[30] Critical shape and size for dislocation nucleation in islands on Si(001), Phys. Rev. Lett., Volume 99 (2007), p. 235505
[31] Modeling the plastic relaxation onset in realistic SiGe islands on Si(001), Phys. Rev. B, Volume 78 (2008), p. 184104
[32] Delayed plastic relaxation on patterned Si substrates: Coherent SiGe pyramids with dominant {111} facets, Phys. Rev. Lett., Volume 98 (2007), p. 176102
[33] Thermodynamics of coherently-strained nanocrystals on Si(001): Alloy composition and island formation, Nano Lett., Volume 7 (2007), p. 156101
[34] Composition maps in self-assembled alloy quantum dots, Phys. Rev. Lett., Volume 100 (2008), p. 106104
[35] Intermixing in heteroepitaxial islands: fast, self-consistent calculation of the concentration profile minimizing the elastic energy, New J. Phys., Volume 10 (2008), p. 083039
[36] A fast computational method for determining equilibrium concentration profiles in intermixed nanoislands, J. Phys. Condens. Matter, Volume 21 (2009), p. 084217
[37] Diffusion of Ge below the Si(100) surface: theory and experiment, Phys. Rev. Lett., Volume 84 (2000), p. 2441
[38] Alloying in Ge(Si)/Si(001) self-assembled islands during their growth and capping: XPS and AFM study, Phys. Rev. B, Volume 77 (2008), p. 045431
[39] First principles study of Ge/Si exchange mechanisms at the Si(001) surface, Appl. Phys. Lett., Volume 92 (2008), p. 191908
[40] Si/Ge exchange mechanisms at the Ge(105) surface, Phys. Rev. B, Volume 81 (2010), p. 125439
[41] Strain-driven alloying in Ge/Si(100) coherent islands, Phys. Rev. Lett., Volume 83 (1999), p. 1199
[42] SiGe intermixing in Ge/Si(100) islands, Appl. Phys. Lett., Volume 78 (2001), p. 303
[43] Collective shape oscillations of SiGe islands on pit-patterned Si(001) substrates: A coherent-growth strategy enabled by self-regulated intermixing, Phys. Rev. Lett., Volume 105 (2010), p. 166102
[44] Three-dimensional composition profiles of single quantum dots determined by scanning-probe-microscopy-based nanotomography, Nano Lett., Volume 8 (2008), p. 1404
[45] Kinetic surface segregation and the evolution of nanostructures, Appl. Phys. Lett., Volume 83 (2003), p. 353
[46] Origin of apparent critical thickness for island formation in heteroepitaxy, Phys. Rev. Lett., Volume 93 (2004) no. 21, p. 216101
[47] Coarsening, mixing, and motion: The complex evolution of epitaxial islands, Phys. Rev. Lett., Volume 98 (2007), p. 096103
[48] Anomalous smoothing preceding island formation during growth on patterned substrates, Phys. Rev. Lett., Volume 109 (2012), p. 156101
[49] Influence of surface energy anisotropy on the dynamics of quantum dot growth, Phys. Rev. B, Volume 82 (2010), p. 085322
[50] Three-dimensional finite-element simulations of the self-organized growth of quantum dot superlattices, Phys. Rev. B, Volume 68 (2003), p. 195314
[51] Coupled evolution of composition and morphology in a faceted three-dimensional quantum dot, Phys. Rev. B, Volume 84 (2011), p. 035432
[52] Surface evolution of elastically stressed films under deposition by a diffuse interface model, J. Comput. Phys., Volume 214 (2006), p. 187
[53] Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition, Nanotechnology, Volume 91 (2010), p. 475302
[54] Influence of surface stress on the equilibrium shape of strained quantum dots, Phys. Rev. B, Volume 58 (1998), p. 4566
[55] Shape and stability of quantum dots, Appl. Phys. A, Volume 534 (1997), p. 525
[56] Monolithic growth of ultrathin Ge nanowires on Si(001), Phys. Rev. Lett., Volume 109 (2012), p. 085502
[57] Electronic and elastic contributions in the enhanced stability of Ge(1 0 5) under compressive strain, Surf. Sci., Volume 556 (2004), p. 121
[58] First-principles study of strain stabilization of Ge(105) facet on Si(001), Phys. Rev. B, Volume 72 (2005), p. 125415
[59] Role of strain-dependent surface energies in Ge/Si(100) island formation, Phys. Rev. Lett., Volume 94 (2005), p. 176102
[60] Critical role of the surface reconstruction in the thermodynamic stability of {105} Ge pyramids on Si(001), Phys. Rev. Lett., Volume 88 (2002), p. 256103
[61] Origin of the stability of Ge(105) on Si: A new structural model and surface strain relaxation, Phys. Rev. Lett., Volume 88 (2002), p. 176101
[62] An initial phase of Ge hut array formation at low temperature on Si(001), J. Appl. Phys., Volume 111 (2011), p. 094307
[63] Shape transition in growth of strained islands: Spontaneous formation of quantum wires, Phys. Rev. Lett., Volume 70 (1993), p. 2782
[64] Experimental insights into Si and SiGe growth instabilities: Influence of kinetic growth parameters and substrate orientation, Mater. Sci. Eng. B, Volume 101 (2003), p. 95
[65] Ge dots self-assembling: Surfactant mediated growth of Ge on SiGe(118) stress-induced kinetic instabilities, Appl. Phys. Lett., Volume 83 (2003), p. 4833
[66] Formation of Ge nanoripples on vicinal Si(1 1 10): From Stranski–Krastanow seeds to a perfectly faceted wetting layer, Phys. Rev. Lett., Volume 108 (2012), p. 055503
[67] Shaping Ge islands on Si(001) surfaces with misorientation angle, Phys. Rev. Lett., Volume 104 (2010), p. 036104
[68] Early stage of Ge growth on Si(001) vicinal surfaces with an 8° miscut along [110], Phys. Rev. B, Volume 75 ( January 2007 ), p. 033305
[69] Energetics of {105}-faceted Ge nanowires on Si(001): An atomistic calculation of edge contributions, Phys. Rev. B, Volume 75 (2007), p. 075311
[70] J.J. Zhang, A. Rastelli, O.G. Schmidt, D. Scopece, L. Miglio, F. Montalenti, Self-organized evolution of Ge/Si(001) into bundles of horizontal nanowires during annealing, submitted for publication.
[71] One-dimensional to three-dimensional ripple-to-dome transition for SiGe on vicinal Si(1 1 10), Phys. Rev. Lett., Volume 109 (2012), p. 025505
[72] Ripple-to-dome transition: The growth evolution of Ge on vicinal Si(1 1 10) surface, Phys. Rev. B, Volume 82 (2010), p. 121309(R)
[73] Atomic-scale pathway of the pyramid-to-dome transition during Ge growth on Si(001), Phys. Rev. Lett., Volume 93 (2004), p. 216102
[74] Nucleation of Ge clusters at high temperatures on Ge/Si(001) wetting layer, J. Appl. Phys., Volume 109 (2012), p. 104319
Cité par Sources :
Commentaires - Politique