Comptes Rendus
Nanomechanics serving polymer-based composite research
Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 331-352.

Tremendous progress in nanomechanical testing and modelling has been made during the last two decades. This progress emerged from different areas of materials science dealing with the mechanical behaviour of thin films and coatings, polymer blends, nanomaterials or microstructure constituents as well as from the rapidly growing field of MEMS. Nanomechanical test methods include, among others, nanoindentation, in-situ testing in a scanning or transmission electron microscope coupled with digital image correlation, atomic force microscopy with new advanced dynamic modes, micropillar compression or splitting, on-chip testing, or notched microbeam bending. These methods, when combined, reveal the elastic, plastic, creep, and fracture properties at the micro- and even the nanoscale. Modelling techniques including atomistic simulations and several coarse graining methods have been enriched to a level that allows treating complex size, interface or surface effects in a realistic way. Interestingly, the transfer of this paradigm to advanced long fibre-reinforced polymer composites has not been as intense compared to other fields. Here, we show that these methods put together can offer new perspectives for an improved characterisation of the response at the elementary fibre-matrix level, involving the interfaces and interphases. Yet, there are still many open issues left to resolve. In addition, this is the length scale, typically below 10 micrometres, at which the current multiscale modelling paradigm still requires enhancements to increase its predictive potential, in particular with respect to non-linear plasticity and fracture phenomena.

Première publication :
Publié le :
DOI : 10.5802/crphys.56
Mots clés : Nanomechanics, Nanoindentation, DIC, Polymer-based Composites, AFM
Thomas Pardoen 1 ; Nathan Klavzer 1 ; Sarah Gayot 1, 2 ; Frederik Van Loock 1 ; Jérémy Chevalier 3 ; Xavier Morelle 4 ; Vincent Destoop 1 ; Frédéric Lani 3 ; Pedro Camanho 5 ; Laurence Brassart 6 ; Bernard Nysten 2 ; Christian Bailly 2

1 Institute of Mechanics, Materials and Civil engineering (iMMC), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
2 Institute of Condensed Matter and Nanosciences - Bio and Soft Matter (IMCN/BSMA), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
3 Solvay, Material Science Application Center (MSAC), B-1120 Bruxelles, Belgium
4 Laboratoire d’Ingénierie des Matériaux Polymères, CNRS UMR n°5223, INSA de Lyon, 69100 Villeurbanne, France
5 Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto, Portugal
6 Department of Engineering Science, University of Oxford, OX1 3PJ Oxford, United Kingdom
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2021__22_S3_331_0,
     author = {Thomas Pardoen and Nathan Klavzer and Sarah Gayot and Frederik Van Loock and J\'er\'emy Chevalier and Xavier Morelle and Vincent Destoop and Fr\'ed\'eric Lani and Pedro Camanho and Laurence Brassart and Bernard Nysten and Christian Bailly},
     title = {Nanomechanics serving polymer-based composite research},
     journal = {Comptes Rendus. Physique},
     pages = {331--352},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S3},
     year = {2021},
     doi = {10.5802/crphys.56},
     language = {en},
}
TY  - JOUR
AU  - Thomas Pardoen
AU  - Nathan Klavzer
AU  - Sarah Gayot
AU  - Frederik Van Loock
AU  - Jérémy Chevalier
AU  - Xavier Morelle
AU  - Vincent Destoop
AU  - Frédéric Lani
AU  - Pedro Camanho
AU  - Laurence Brassart
AU  - Bernard Nysten
AU  - Christian Bailly
TI  - Nanomechanics serving polymer-based composite research
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 331
EP  - 352
VL  - 22
IS  - S3
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.56
LA  - en
ID  - CRPHYS_2021__22_S3_331_0
ER  - 
%0 Journal Article
%A Thomas Pardoen
%A Nathan Klavzer
%A Sarah Gayot
%A Frederik Van Loock
%A Jérémy Chevalier
%A Xavier Morelle
%A Vincent Destoop
%A Frédéric Lani
%A Pedro Camanho
%A Laurence Brassart
%A Bernard Nysten
%A Christian Bailly
%T Nanomechanics serving polymer-based composite research
%J Comptes Rendus. Physique
%D 2021
%P 331-352
%V 22
%N S3
%I Académie des sciences, Paris
%R 10.5802/crphys.56
%G en
%F CRPHYS_2021__22_S3_331_0
Thomas Pardoen; Nathan Klavzer; Sarah Gayot; Frederik Van Loock; Jérémy Chevalier; Xavier Morelle; Vincent Destoop; Frédéric Lani; Pedro Camanho; Laurence Brassart; Bernard Nysten; Christian Bailly. Nanomechanics serving polymer-based composite research. Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 331-352. doi : 10.5802/crphys.56. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.56/

[1] A. R. Melro; P. P. Camanho; F. M. Andrade Pires; S. T. Pinho Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I – Constitutive modelling, Int. J. Solids Struct., Volume 50 (2013) no. 11-12, pp. 1897-1905 | DOI

[2] A. R. Melro; P. P. Camanho; F. M. Andrade Pires; S. T. Pinho Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part II – Micromechanical analyses, Int. J. Solids Struct., Volume 50 (2013) no. 11-12, pp. 1906-1915 | DOI

[3] Y. Liu; F. P. Meer; L. J. Van der Sluys; J. T. Fan A numerical homogenization scheme used for derivation of a homogenized viscoelastic-viscoplastic model for the transverse response of fiber-reinforced polymer composites, Compos. Struct., Volume 252 (2020), 112690 | DOI

[4] Zeliang Liu; M. A. Bessa; Wing Kam Liu Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials, Comput. Methods Appl. Mech. Eng., Volume 306 (2016), pp. 319-341 | DOI

[5] Rex Bedzra; Stefanie Reese; Jaan-Willem Simon Hierarchical multi-scale modelling of flax fibre/epoxy composite by means of general anisotropic viscoelastic-viscoplastic constitutive models: Part I – Micromechanical model, Int. J. Solids Struct., Volume 202 (2020), pp. 299-318 | DOI

[6] Reed Kopp; Xinchen Ni; Estelle Kalfon-Cohen; Carolina Furtado; Albertino Arteiro; Gregor Borstnar; Mark Mavrogordato; Lukas Helfen; Ian Sinclair; S. Mark Spearing; Pedro Camanho; Brian L. Wardle Damage micro-mechanisms in notched hierarchical nanoengineered thin-ply composite laminates studied by in-situ synchrotron X-ray microtomography, AIAA Scitech 2019 Forum (2019) | DOI

[7] S. C. Garcea; I. Sinclair; S. M. Spearing; P. J. Withers Mapping fibre failure in situ in carbon fibre reinforced polymers by fast synchrotron X-ray computed tomography, Compos. Sci. Technol., Volume 149 (2017), pp. 81-89 | DOI

[8] E. Schöberl; C. Breite; A. Melnikov; Y. Swolfs; M. N. Mavrogordato; I. Sinclair; S. M. Spearing Fibre-direction strain measurement in a composite ply under quasi-static tensile loading using Digital Volume Correlation and in situ Synchrotron Radiation Computed Tomography, Compos. Part A Appl. Sci. Manuf., Volume 137 (2020), 105935 | DOI | Zbl

[9] M. Bornert; F. Brémand; P. Doumalin; J.-C. Dupré; M. Fazzini; M. Grédiac; F. Hild; S. Mistou; J. Molimard; J.-J. Orteu; L. Robert; Y. Surrel; P. Vacher; B. Wattrisse Assessment of Digital Image Correlation Measurement Errors: Methodology and Results, Exper. Mech., Volume 49 (2009), pp. 353-370 | DOI

[10] A. Buljac; C. Jailin; A. Mendoza; J. Neggers; T. Taillandier-Thomas; A. Bouterf; B. Smaniotto; F. Hild; S. Roux Digital Volume Correlation: Review of Progress and Challenges, Exp. Mech., Volume 58 (2018), pp. 661-708 | DOI

[11] G. Catalanotti; P. P. Camanho; J. Xavier; C. G. Dávila; A. T. Marques Measurement of resistance curves in the longitudinal failure of composites using digital image correlation, Compos. Sci. Technol., Volume 70 (2010) no. 13, pp. 1986-1993 | DOI

[12] Stepan V. Lomov; Dmitry S. Ivanov; Ignaas Verpoest; Masaru Zako; Tetsusei Kurashiki; Hiroaki Nakai; Jerome Molimard; Alain Vautrin Full-field strain measurements for validation of meso-FE analysis of textile composites, Compos. Part A Appl. Sci. Manuf., Volume 39 (2008) no. 8, pp. 1218-1231 | DOI

[13] Man Zhu; Larissa Gorbatikh; Sander Fonteyn; Danny Van Hemelrijck; Lincy Pyl; Delphine Carrella-Payan; Stepan V. Lomov Digital image correlation assisted characterization of Mode I fatigue delamination in composites, Compos. Struct., Volume 253 (2020), 112746

[14] I. B. C. M. Rocha; P. Kerfriden; F. P. van der Meer Micromechanics-based surrogate models for the response of composites: A critical comparison between a classical mesoscale constitutive model, hyper-reduction and neural networks, Eur. J. Mech. - A Solids, Volume 82 (2020), 103995 | DOI

[15] M. A. Bessa; R. Bostanabad; Z. Liu; A. Hu; Daniel W. Apley; C. Brinson; W. Chen; Wing Kam Liu A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality, Comput. Methods Appl. Mech. Eng., Volume 320 (2017), pp. 633-667 | DOI

[16] Shan Tang; Ying Li; Hai Qiu; Hang Yang; Sourav Saha; Satyajit Mojumder; Wing Kam Liu; Xu Guo MAP123-EP: A mechanistic-based data-driven approach for numerical elastoplastic analysis, Comput. Methods Appl. Mech. Eng., Volume 364 (2020) no. 1, 112955 | DOI

[17] N. A. Fleck; J. W. Hutchinson A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, Volume 49 (2001) no. 10, pp. 2245-2271 | DOI

[18] David C. C. Lam; Arthur C. M. Chong Indentation model and strain gradient plasticity law for glassy polymers, J. Mater. Res., Volume 14 (1999) no. 9, pp. 3784-3788 | DOI

[19] J. Chevalier; X. P. Morelle; P. P. Camanho; F. Lani; T. Pardoen On a unique fracture micromechanism for highly cross-linked epoxy resins, J. Mech. Phys. Solids, Volume 122 (2019), pp. 502-519 | DOI

[20] Thomas Hobbiebrunken; B. Fiedler; M. Hojo; M. Tanaka Experimental determination of the true epoxy resin strength using micro-scaled specimens, Compos. Part A Appl. Sci. Manuf., Volume 38 (2007) no. 3, pp. 814-818 | DOI

[21] Jun Misumi; Raja Ganesh; Subramani Sockalingam; John W. Gillespie Experimental characterization of tensile properties of epoxy resin by using micro-fiber specimens, J. Reinf. Plast. Compos., Volume 35 (2016) no. 24, pp. 1792-1801 | DOI

[22] Xiaomeng Sui; Mayank Tiwari; Israel Greenfeld; Rafail L. Khalfin; Hauke Meeuw; Bodo Fiedler; Daniel H. Wagner Extreme scale-dependent tensile properties of epoxy fibers, Express Polym. Lett., Volume 11 (2019) no. 13, pp. 993-1003 | DOI

[23] Olivier Verschatse; Lode Daelemans; Wim Van Paepegem; Karen De Clerck In-situ observations of microscale ductility in a quasi-brittle bulk scale epoxy, Polymers, Volume 12 (2020) no. 11, 2581

[24] C. Breite; A. Melnikov; A. Turon; A. B. de Morais; F. Otero; F. Mesquita; J. Costa; J. A. Mayugo; J. M. Guerrero; L. Gorbatikh; L. N. McCartney; M. Hajikazemi et al. Blind benchmarking of seven longitudinal tensile failure models for two virtual unidirectional composites, Compos. Sci. Technol. (2020), 108555 | DOI

[25] C. Breite; A. Melnikov; A. Turon; A. B. de Morais; C. Le Bourlot; E. Maire; E. Schöberl; F. Otero et al. Detailed experimental validation and benchmarking of six models for longitudinal tensile failure of unidirectional composites (2020) (submitted to Composites Part A: Applied Science and Manufacturing)

[26] M. Hardiman; T. J. Vaughan; C. T. McCarthy A review of key developments and pertinent issues in nanoindentation testing of fibre reinforced plastic microstructures, Compos. Struct., Volume 180 (2017), pp. 782-798 | DOI

[27] Carlos González; Javier LLorca Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling, Compos. Sci. Technol., Volume 67 (2007) no. 13, pp. 2795-2806 | DOI

[28] F. Alisafaei; Chung-Souk Han; Nishant Lakhera Characterization of indentation size effects in epoxy, Polym. Test., Volume 40 (2014), pp. 70-78 | DOI

[29] Chung-Souk Han; Seyed H. R. Sanei; Farid Alisafaei On the origin of indentation size effects and depth dependent mechanical properties of elastic polymers, J. Pol. Eng., Volume 36 (2016), pp. 103-111 | DOI

[30] W. C. Oliver; G. M. Pharr An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., Volume 7 (1992) no. 6, pp. 1564-1583 | DOI

[31] Ian N. Sneddon The relation between load and penetration in the axisymmetric Boussinesq problem for punch of arbitrary profile, Int. J. Eng. Sci., Volume 3 (1965) no. 1, pp. 47-57 | DOI

[32] J. L. Loubet; M. Bauer; A. Tonck; S. Bec; B. Gauthier-Manuel Nanoindentation with a surface force apparatus, Mechanical properties and deformation behavior of materials having ultra-fine microstructures (Michael Nastasi; Don M. Parkin; Herbert Gleiter, eds.) (NATO ASI Series), Volume 233, Springer, 1993, pp. 429-447 | DOI

[33] Mark R. VanLandingham; John S. Villarrubia; William F. Guthrie; Greg F. Meyers Nanoindentation of polymers: an overview, Macromol. Symp., Volume 167 (2001), pp. 15-43 | DOI

[34] Davide Tranchida; Stefano Piccarolo; Joachim Loos; Alexander Alexeev Accurately evaluating Young’s modulus of polymers through nanoindentations: A phenomenological correction factor to the Oliver and Pharr procedure, Appl. Phys. Lett., Volume 89 (2006), 171905 | DOI

[35] M. Hardiman; T. J. Vaughan; C. T. McCarthy The effects of pile-up, viscoelasticity and hydrostatic stress on polymer matrix nanoindentation, Polym. Test., Volume 52 (2016), pp. 157-166 | DOI

[36] Ricardo Martinez; L. Roy Xu Comparison of the Young’s moduli of polymers measured from nanoindentation and bending experiments, MRS Commun, Volume 4 (2014) no. 3, pp. 89-93 | DOI

[37] Davide Tranchida; Stefano Piccarolo; Joachim Loos; Alexander Alexeev Mechanical characterization of polymers on a nanometer scale through nanoindentation. A study on pile-up and viscoelasticity, Macromolecules, Volume 40 (2007) no. 4, pp. 1259-1267 | DOI

[38] M. Rodríguez; J. M. Molina-Aldareguía; C. González; J. LLorca Determination of the mechanical properties of amorphous materials through instrumented nanoindentation, Acta Mater., Volume 60 (2012) no. 9, pp. 3953-3964 | DOI

[39] Arthur C. M. Chong; David C. C. Lam Strain gradient plasticity effect in indentation hardness of polymers, J. Mater. Res., Volume 14 (1999) no. 10, pp. 4103-4110 | DOI

[40] Gurudutt Chandrashekar; Chung-Souk Han Length scale effects in epoxy: The dependence of elastic moduli measurements on spherical indenter tip radius, Polym. Test., Volume 53 (2016), pp. 227-233 | DOI

[41] Chung-Souk Han Influence of the molecular structure on indentation size effect in polymers, Mater. Sci. Eng. A, Volume 527 (2010) no. 3, pp. 619-624 | DOI

[42] Farid Alisafaei; Chung-Souk Han Indentation Depth Dependent Mechanical Behavior in Polymers, Adv. Cond. Matter Phys., Volume 2015 (2015), 391579 | DOI

[43] W. Tan; F. Naya; L. Yang; T. Chang; B. G. Falzon; L. Zhan; J. M. Molina-Aldareguía; C. González; J. Llorca The role of interfacial properties on the intralaminar and interlaminar damage behaviour of unidirectional composite laminates: Experimental characterization and multiscale modelling, Compos. Part B Eng., Volume 138 (2018), pp. 206-221 | DOI

[44] C. González; J. J. Vilatela; J. M. Molina-Aldareguía; C. S. Lopes; J. LLorca Structural composites for multifunctional applications: Current challenges and future trends, Prog. Mater. Sci., Volume 89 (2017), pp. 194-251 | DOI

[45] J. Gregory; S. Spearing Nanoindentation of neat and polymers in polymer-matrix composites, Compos. Sci. Technol., Volume 65 (2005) no. 3-4, pp. 595-607 | DOI

[46] M. Hardiman; T. J. Vaughan; C. T. McCarthy Fibrous composite matrix characterisation using nanoindentation: The effect of fibre constraint and the evolution from bulk to in-situ matrix properties, Compos. Part A Appl. Sci. Manuf., Volume 68 (2015), pp. 296-303 | DOI

[47] M. Hardiman; T. J. Vaughan; C. T. McCarthy The effect of fibre constraint in the nanoindentation of fibrous composite microstructures: A finite element investigation, Comput. Mater. Sci., Volume 64 (2012), pp. 162-167 | DOI

[48] Zhong Hu; Mahdi Farahikia; Fereidoon Delfanian Fiber bias effect on characterization of carbon fiber-reinforced polymer composites by nanoindentation testing and modeling, J. Compos. Mater., Volume 49 (2015) no. 27, pp. 3359-3372 | DOI

[49] J. Chevalier Micromechanics of an epoxy matrix for fiber reinforced composites: experiments and physics-based modelling, Ph. D. Thesis, Université Catholique de Louvain, France (2018)

[50] P. Frontini; S. Lotfian; M. A. Monclús; J. M. Molina-Aldareguia High temperature nanoindentation response of RTM6 epoxy resin at different strain rates, Exp. Mech., Volume 55 (2015), pp. 851-862 | DOI

[51] X. P. Morelle; J. Chevalier; C. Bailly; T. Pardoen; F. Lani Mechanical characterization and modeling of the deformation and failure of the highly crosslinked RTM6 epoxy resin, Mech. Time-Depend. Mater., Volume 21 (2017), pp. 419-454 | DOI

[52] G. Binnig; C. F. Quate; Ch. Gerber Atomic Force Microscope, Physi. Rev. Lett., Volume 56 (1986) no. 9, pp. 930-933 | DOI

[53] Stephen A. Joyce; J. E. Houston A new force sensor incorporating force feedback control for interfacial force microscopy, Rev. Sci. Instrum., Volume 62 (1991), pp. 710-715 | DOI

[54] Amir Bahrami; Xavier Morelle; Lê Duy Hông Minh; Thomas Pardoen; Christian Bailly; Bernard Nysten Curing dependent spatial heterogeneity of mechanical response in epoxy resins revealed by atomic force microscopy, Polymer, Volume 68 (2015), pp. 1-10 | DOI

[55] Amir Bahrami; François Cordenier; Pascal Van Velthem; Wael Ballout; Thomas Pardoen; Bernard Nysten; Christian Bailly Synergistic local toughening of high performance epoxy-matrix composites using blended block copolymer-thermoplastic thin films, Compos. Part A Appl. Sci. Manuf., Volume 91 (2016), pp. 398-405 | DOI

[56] Mark R. Vanlandingham; S. H. McKnight; G. R. Palmese; T. A. Bogetti; R. F. Eduljee; J. W. Gillespie Characterization of interphase regions using atomic force microscopy, MRS Proceedings, Volume 458 (1996), 313 | DOI

[57] Mark R. VanLandingham; R. R. Dagastine; R. F. Eduljee; R. L. McCullough; J. W. Gillespie Characterization of nanoscale property variations in polymer composite systems: 1. Experimental results, Compos. Part A Appl. Sci. Manuf., Volume 30 (1999) no. 1, pp. 75-83 | DOI

[58] T. D. Downing; R. Kumar; W. M. Cross; L. Kjerengtroen; J. J. Kellar Determining the interphase thickness and properties in polymer matrix composites using phase imaging atomic force microscopy and nanoindentation, J. Adhes. Sci. Tech., Volume 14 (2000), pp. 1801-1812 | DOI

[59] S. A. Syed Asif; K. J. Wahl; R. J. Colton; O. L. Warren Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation, J. Appl. Phys., Volume 90 (2001), pp. 1192-1200 | DOI

[60] Shang-Lin Gao; Edith Mader Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites, Compos. Part A Appl. Sci. Manuf., Volume 33 (2002) no. 4, pp. 559-576 | DOI

[61] J. M. He; Y. D. Huang AFM characterization of interphase properties of silver-coated carbon fibre reinforced epoxy composites, Polym. Polym. Compos., Volume 14 (2006) no. 2, pp. 123-134 | DOI

[62] Ying Wang; Thomas H. Hahn AFM characterization of the interfacial properties of carbon fiber reinforced polymer composites subjected to hygrothermal treatments, Compos. Sci. Technol., Volume 67 (2007) no. 1, pp. 92-101 | DOI

[63] Si Qun Wang; San Deep Nair; Donna Hurley; Seung Hwan Lee Characterizing interphase properties in fiber reinforced polymer composite with advanced AFM based tools, Adv. Mater. Res., Volume 123–125 (2010), pp. 403-406 | DOI

[64] Meng Qu; Fei Deng; Salmon M. Kalkhoran; Andrew Gouldstone; Agathe Robisson; Krystyn J. Van Vliet Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber–carbon black nanocomposites, Soft Matter, Volume 7 (2011) no. 3, pp. 1066-1077

[65] V. Cech; E. Palesch; J. Lukes The glass fiber–polymer matrix interface/interphase characterized by nanoscale imaging techniques, Compos. Sci. Technol., Volume 83 (2013), pp. 22-26 | DOI

[66] Xu Cheng; Karl W. Putz; Charles D. Wood; L. Catherine Brinson Characterization of Local Elastic Modulus in Confined Polymer Films via AFM Indentation, Macromol. Rapid Commun., Volume 36 (2015) no. 4, pp. 391-397 | DOI

[67] Philip F. Brune; Gregory S. Blackman; Ted Diehl; Jeffrey S. Meth; Don Brill; Yuefei Tao; John Thornton Direct Measurement of Rubber Interphase Stiffness, Macromolecules, Volume 49 (2016) no. 13, pp. 4909-4922 | DOI

[68] Min Zhang; Yang Li; Pavan V. Kolluru; L. Catherine Brinson Determination of mechanical properties of polymer interphase using combined atomic force microscope (AFM) experiments and finite element simulations, Macromolecules, Volume 51 (2018), pp. 8229-8240 | DOI

[69] Libin Kaleeluvilayil Babu The use of AFM indentation to quantify mechanical properties of the interphase region in fiber-reinforced composites, Ph. D. Thesis, Oklahoma State University, USA (2019)

[70] Amir Bahrami; Christian Bailly; Bernard Nysten Spatial resolution and property contrast in local mechanical mapping of polymer blends using AFM dynamic force spectroscopy, Polymer, Volume 165 (2019), pp. 180-190 | DOI

[71] P. Maivald; H. J. Butt; S. A. C. Gould; C. B. Prater; B. Drake; J. A. Gurley; V. B. Elings; P. K. Hansma Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnology, Volume 2 (1991) no. 2, pp. 103-106 | DOI

[72] M. Heuberger; G. Dietler; L. Schlapbach Mapping the local Young’s modulus by analysis of the elastic deformations occurring in atomic force microscopy, Nanotechnology, Volume 6 (1995) no. 1, pp. 12-23 | DOI

[73] S. C. Minne; Y. Hu; S. Hu; B. Pittenger; C. Su Nanoscale quantitative mechanical property mapping using peak force tapping atomic force microscopy, Microsc. Microanal., Volume 16 (2010), pp. 464-465 | DOI

[74] Ozgur Sahin; Sergei Magonov; Chanmin Su; Calvin F. Quate; Olav Solgaard An atomic force microscope tip designed to measure time-varying nanomechanical forces, Nat. Nanotechnol., Volume 2 (2007), pp. 507-514 | DOI

[75] Jose Angel Ramos; Miren Blanco; Iñaki Zalakain; Iñaki Mondragon Nanoindentation study of interphases in epoxy/amine thermosetting systems modified with thermoplastics, J. Colloid Interface Sci., Volume 336 (2009) no. 2, pp. 431-437 | DOI

[76] L. Belec; Y. Joliff Mechanically affected zone in AFM force measurements — Focus on actual probe tip geometry, Mater. Des., Volume 104 (2016), pp. 217-226 | DOI

[77] Peter Eaton; Paul West Atomic Force Microscopy, Oxford University Press, 2010 | DOI

[78] T. A. Bogetti; T. Wang; M. R. VanLandingham; J. W. Gillespie Characterization of nanoscale property variations in polymer composite systems: 2. Numerical modeling, Compos. Part A Appl. Sci. Manuf., Volume 30 (1999) no. 1, pp. 85-94 | DOI

[79] Li Liu; Chuyuan Jia; Jinmei He; Feng Zhao; Dapeng Fan; Lixin Xing; Mingqiang Wang; Fang Wang; Zaixing Jiang; Yudong Huang Interfacial characterization, control and modification of carbon fiber reinforced polymer composites, Compos. Sci. Technol., Volume 121 (2015), pp. 56-72 | DOI

[80] M. Munz; H. Sturm; E. Schulz; G. Hinrichsen The scanning force microscope as a tool for the detection of local mechanical properties within the interphase of fibre reinforced polymers, Compos. Part A Appl. Sci. Manuf., Volume 29 (1998) no. 9-10, pp. 1251-1259 | DOI

[81] J. G. Williams; M. E. Donnellan; M. R. James; W. L. Morris Properties of the interphase in organic matrix composites, Mater. Sci. Eng. A, Volume 126 (1990) no. 1, pp. 305-312 | DOI

[82] R. M. Winter; J. E. Houston Interphase mechanical properties in an epoxy-glass fiber composite as measured by interfacial microscopy, Proceedings of the SEM Spring Conference on Experimental and Applied Mechanics and Experimental/Numerical Mechanics in Electronic Packaging III (1998), pp. 355-358

[83] K. Mai; E. Mäder; M. Mühle Interphase characterization in composites with new non-destructive methods, Compos. Part A Appl. Sci. Manuf., Volume 29 (1998) no. 9-10, pp. 1111-1119 | DOI

[84] Zakariya Boufaida Analyse des propriétés mécaniques de composites taffetas verre/matrice acrylique en relation avec les propriétés d’adhésion des fibres sur la matrice, Ph. D. Thesis, Université de Lorraine, France (2015)

[85] I. B. C. M. Rocha; S. Raijmaekers; F. P. van der Meer; R. P. L. Nijssen; H. R. Fischer; L. J. Sluys Combined experimental/numerical investigation of directional moisture diffusion in glass/epoxy composites, Compos. Sci. Technol., Volume 151 (2017), pp. 16-24 | DOI

[86] A. D. Kammers; S. Daly Digital image correlation under scanning electron microscopy: methodology and validation, Exp. Mech., Volume 53 (2013), pp. 1743-1761 | DOI

[87] Fabienne Lagattu; Florent Bridier; Patrick Villechaise; Jean Brillaud In-plane strain measurements on a microscopic scale by coupling digital image correlation and an in situ SEM technique, Mater. Charact., Volume 56 (2006) no. 1, pp. 10-18 | DOI

[88] I. Miskdjian; M. Hajikazemi; W. Van Paepegem Automatic edge detection of ply cracks in glass fiber composite laminates under quasi-static and fatigue loading using multi-scale Digital Image Correlation, Compos. Sci. Technol., Volume 200 (2020), 108401 | DOI

[89] Joachim R. Schreier; Michael A. Sutton Systematic errors in digital image correlation caused by intensity interpolation, Opt. Eng., Volume 39 (2000) no. 11, pp. 2915-2921 | DOI

[90] M. Sutton; N. Li; D. Joy; A. Reynolds; X. Li Scanning Electron Microscopy for Quantitative Small and Large Deformation Measurements Part I: SEM Imaging at Magnifications from 200 to 10,000, Exp. Mech., Volume 47 (2007), pp. 775-787 | DOI

[91] Jennifer L. W. Carter; Michael D. Uchic; Michael J. Mills Impact of Speckle Pattern Parameters on DIC Strain Resolution Calculated from In-situ SEM Experiments, Fracture, Fatigue, Failure, and Damage Evolution, Volume 5 (Jay Carroll; Samantha Daly, eds.) (Conference Proceedings of the Society for Experimental Mechanics Series), Springer, 2015, pp. 119-126 | DOI

[92] L. P. Canal; C. González; J. M. Molina-Aldareguía; J. Segurado; J. LLorca Application of digital image correlation at the microscale in fiber-reinforced composites, Compos. Part A Appl. Sci. Manuf., Volume 43 (2012) no. 10, pp. 1630-1638 | DOI

[93] Mahoor Mehdikhani; Mohammadali Aravand; Baris Sabuncuoglu; Michaël G. Callens; Stepan V. Lomov; Larissa Gorbatikh Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation, Compos. Struct., Volume 140 (2016), pp. 192-201 | DOI

[94] Mahoor Mehdikhani; Anna Matveeva; M. Ali Aravand; Brian L. Wardle; Stepan V. Lomov; Larissa Gorbatikh Strain mapping at the micro-scale in hierarchical polymer composites with aligned carbon nanotube grafted fibers, Compos. Sci. Technol., Volume 137 (2016), pp. 24-34 | DOI

[95] J. P. M. Hoefnagels; M. P. F. H. L. van Maris; T. Vermeij One-step deposition of nano-to-micron-scalable, high-quality digital image correlation patterns for high-strain in-situ multi-microscopy testing, Strain, Volume 55 (2019) no. 6, e12330 | DOI

[96] C. B. Montgomery; B. Koohbor; N. R. Sottos A robust patterning technique for electron microscopy-based digital image correlation at sub-micron resolutions, Exp.l Mech., Volume 59 (2019), pp. 1063-1073 | DOI

[97] Robin Naylor; Christian Fagiano; Martin Hirsekorn; Bastien Tranquart; Emmanuel Baranger Mesures de champs de déformations par corrélations d’images pour l’identification de modèles mécaniques microscopiques de composites à matrice polymère, Journées Nationales sur les Composites 2017 (Compte Rendus des JNC), Volume 17 (2017), pp. 1-10

[98] J. Chevalier; P. P. Camanho; F. Lani; T. Pardoen Multi-scale characterization and modelling of the transverse compression response of unidirectional carbon fiber reinforced epoxy, Compos. Struct., Volume 209 (2019), pp. 160-176 | DOI

[99] E. K. Gamstedt; B. A. Sjögren Micromechanisms in tension-compression fatigue of composite laminates containing transverse plies, Compos. Sci. Technol., Volume 59 (1999) no. 2, pp. 167-178 | DOI

[100] Thomas Hobbiebrunken; Masaki Hojo; Taiji Adachi; Claas De Jong; Bodo Fiedler Evaluation of interfacial strength in CF/epoxies using FEM and in-situ experiments, Compos. Part A Appl. Sci. Manuf., Volume 37 (2006) no. 12, pp. 2248-2256 | DOI

[101] Bryan Harris Fatigue in composites: science and technology of the fatigue response of fibre-reinforced plastics, Woodhead Publishing Limited, 2003

[102] Madhu S. Madhukar; Lawrence T. Drzal Fiber-matrix adhesion and its effect on composite mechanical properties: I. Inplane and interlaminar shear behavior of graphite/epoxy composites, J.Compos. Mater., Volume 25 (1991) no. 8, pp. 932-957 | DOI

[103] Madhu S. Madhukar; Lawrence T. Drzal Fiber-matrix adhesion and its effect on composite mechanical properties: III. Longitudinal (0 degree) compressive properties of graphite/epoxy composites, J. Compos. Mater., Volume 26 (1992) no. 3, pp. 310-333 | DOI

[104] B. K. Larson; L. T. Drzal Glass fibre sizing/matrix interphase formation in liquid composite moulding: effects on fibre/matrix adhesion and mechanical properties, Composites, Volume 25 (1994) no. 7, pp. 711-721 | DOI

[105] S. Subramanian; J. Lesko; K. Reifsnider; W. Stinchcomb Characterization of the fibre-matrix interphase and its influence on mechanical properties of unidirectional composites, J. Compos. Mater., Volume 30 (1996) no. 3, pp. 309-332 | DOI

[106] J. Varna; R. Joffe; L. A. Berglund Interfacial toughness evaluation from the single-fiber fragmentation test, Compos. Sci. Technol., Volume 56 (1996) no. 9, pp. 1105-1109 | DOI

[107] Bernard Miller; Pierre Muri; Ludwig Rebenfeld A microbond method for determination of the shear strength of a fiber/resin interface, Compos. Sci. Technol., Volume 28 (1987), pp. 17-32 | DOI

[108] F. Hoecker; J. Karger-Kocsis Effects of the interface on th e mechanical response of CF/EP microcomposites and macrocomposites, Composites, Volume 25 (1994) no. 7, pp. 729-738 | DOI

[109] M. R. Piggott; S. R. Dai Fiber pull out experiments with thermoplastics, Polym. Eng. Sci., Volume 31 (1991) no. 17, pp. 1246-1249 | DOI

[110] Kazuto Tanaka; Kohji Minoshima; Witold Grela; Kenjiro Komai Characterization of the aramid/epoxy interfacial properties by means of pull-out test and influence of water absorption, Compos. Sci. Technol., Volume 62 (2002) no. 16, pp. 2169-2177 | DOI

[111] M. Desaeger; I. Verpoest On the use of the micro-indentation test technique to measure the interfacial shear strength of fibre-reinforced polymer composites, Compos. Sci. Technol., Volume 48 (1993) no. 1-4, pp. 215-226 | DOI

[112] M. Rodríguez; J. M. Molina-Aldareguía; C. González; J. LLorca A methodology to measure the interface shear strength by means of the fiber push-in test, Compos. Sci. Technol., Volume 72 (2012) no. 15, pp. 1924-1932 | DOI

[113] J.J. Sha; J.X. Dai; J. Li; Z.Q. Wei; J.-M. Hausherr; W. Krenkel Measurement and analysis of fiber-matrix interface strength of carbon fiber-reinforced phenolic resin matrix composites, J. Compos. Mater., Volume 48 (2014) no. 11, pp. 1303-1311 | DOI

[114] M. Greisel; J. Jäger; J. Moosburger-Will; M. G. R. Sause; W. M. Mueller; S. Horn Influence of residual thermal stress in carbon fiber-reinforced thermoplastic composites on interfacial fracture toughness evaluated by cyclic single-fiber push-out tests, Compos. Part A Appl. Sci. Manuf., Volume 66 (2014), pp. 117-127 | DOI

[115] J. Jäger; M. G. R. Sause; F. Burkert; J. Moosburger-Will; M. Greisel; S. Horn Influence of plastic deformation on single-fiber push-out tests of carbon fiber reinforced epoxy resin, Compos. Part A Appl. Sci. Manuf., Volume 71 (2015), pp. 157-167 | DOI

[116] M. R. Piggott Why interface testing by single-fibre methods can be misleading, Compos. Sci. Technol., Volume 57 (1997) no. 8, pp. 965-974 | DOI

[117] Giulio Alfano; Elio Sacco Combining interface damage and friction in a cohesive-zone model: combining interface damage and friction in a cohesive-zone model, Int. J. Numer. Meth. Eng., Volume 68 (2006) no. 5, pp. 542-582 | DOI

[118] J. LLorca; C. González; J. M. Molina-Aldareguía; J. Segurado; R. Seltzer; F. Sket; M. Rodríguez; S. Sádaba; R. Muñoz; L. P. Canal Multiscale Modeling of Composite Materials: a Roadmap Towards Virtual Testing, Adv. Mater., Volume 23 (2011) no. 44, pp. 5130-5147 | DOI

[119] Essam Totry; Carlos González; Javier LLorca; J. M. Molina-Aldareguía Mechanisms of shear deformation in fiber-reinforced polymers: experiments and simulations, Int. J. Fract., Volume 158 (2009), pp. 197-209 | DOI

[120] Jérémy Chevalier; Laurence Brassart; Frédéric Lani; Christian Bailly; Thomas Pardoen; Xavier P. Morelle Unveiling the nanoscale heterogeneity controlled deformation of thermosets, J. Mech. Phys. Solids, Volume 121 (2018), pp. 432-446 | DOI

[121] Thomas E. Gartner; Arthi Jayaraman Modeling and Simulations of Polymers: A Roadmap, Macromolecules, Volume 52 (2019) no. 3, pp. 755-786 | DOI

[122] R. N Haward; G. Thackray The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics, Proc. Math. Phys. Eng. Sci., Volume 302 (1968), pp. 453-472 | DOI

[123] Mary C. Boyce; David M. Parks; Ali S. Argon Large inelastic deformation of glassy polymers. part I: rate dependent constitutive model, Mech. Mater., Volume 7 (1988) no. 1, pp. 15-33 | DOI

[124] C. Buckley Glass-rubber constitutive model for amorphous polymers near the glass transition, Polymer, Volume 36 (1995) no. 17, pp. 3301-3312 | DOI

[125] E. T. J. Klompen; T. A. P. Engels; L. E. Govaert; H. E. H. Meijer Modeling of the Postyield Response of Glassy Polymers: Influence of Thermomechanical History, Macromolecules, Volume 38 (2005), pp. 6997-7008 | DOI

[126] Joakim Johnsen; Arild Holm Clausen; Frode Grytten; Ahmed Benallal; Odd Sture Hopperstad A thermo-elasto-viscoplastic constitutive model for polymers, J. Mech. Phys. Solids, Volume 124 (2019), pp. 681-701 | DOI

[127] Vikas Srivastava; Shawn A. Chester; Nicoli M. Ames; Lallit Anand A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition, Int. J. Plast., Volume 26 (2010) no. 8, pp. 1138-1182 | DOI

[128] A. S. Argon Plastic deformation in metallic glasses, Acta Metall., Volume 27 (1979) no. 1, pp. 47-58 | DOI

[129] A. S. Argon; L. T. Shi Development of visco-plastic deformation in metallic glasses, Acta Metall., Volume 31 (1983) no. 4, pp. 499-507 | DOI

[130] M. L. Falk; J. S. Langer Dynamics of viscoplastic deformation in amorphous solids, Phys. Rev. E, Volume 57 (1998) no. 6, pp. 7192-7205 | DOI

[131] Mareike Zink; K. Samwer; W. L. Johnson; S. G. Mayr Plastic deformation of metallic glasses: Size of shear transformation zones from molecular dynamics simulations, Phys. Rev. B, Volume 73 (2006) no. 17, 172203

[132] Y. C. Hu; P. F. Guan; M. Z. Li; C. T. Liu; Y. Yang; H. Y. Bai; W. H. Wang Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations, Phys. Rev. B, Volume 93 (2016), 214202 | DOI

[133] Karina E. Avila; Stefan Küchemann; Iyad Alabd Alhafez; Herbert M. Urbassek Shear-transformation zone activation during loading and unloading in nanoindentation of metallic glasses, Materials, Volume 12 (2019) no. 9, 1477 | DOI

[134] P. H. Mott; A. S. Argon; U. W. Suter Atomistic modelling of plastic deformation of glassy polymers, Philos. Mag. A, Volume 67 (1993), pp. 931-978 | DOI

[135] E. F. Oleinik; S. N. Rudnev; O. B. Salamatina Evolution in concepts concerning the mechanism of plasticity in solid polymers after the 1950s, Polym. Sci. Ser. A, Volume 49 (2007), pp. 1302-1327 | DOI

[136] A. S. Argon; H. Y. Kuo Plastic flow in a disordered bubble raft (an analog of a metallic glass), Mater. Sci. Eng., Volume 39 (1979) no. 1, pp. 101-109 | DOI

[137] D. Pan; A. Inoue; T. Sakurai; M. W. Chen Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses, Proc. Natl. Acad. Sci., Volume 105 (2008) no. 39, pp. 14769-14772 | DOI

[138] George Z. Voyiadjis; Aref Samadi-Dooki Constitutive modeling of large inelastic deformation of amorphous polymers: Free volume and shear transformation zone dynamics, J. Appl. Phys., Volume 119 (2016), 225104 | DOI

[139] Eric R. Homer; Christopher A. Schuh Mesoscale modeling of amorphous metals by shear transformation zone dynamics, Acta Mater., Volume 57 (2009) no. 9, pp. 2823-2833 | DOI

[140] Eric R. Homer; David Rodney; Christopher A. Schuh Kinetic Monte Carlo study of activated states and correlated shear-transformation-zone activity during the deformation of an amorphous metal, Phys.l Rev. B, Volume 81 (2010) no. 6, 064204 | DOI

[141] Eric R. Homer; Christopher A. Schuh Three-dimensional shear transformation zone dynamics model for amorphous metals, Model. Simul. Mater. Sci. Eng., Volume 18 (2010) no. 6, 065009 | DOI

[142] L. Li; E. R. Homer; C. A. Schuh Shear transformation zone dynamics model for metallic glasses incorporating free volume as a state variable, Acta Mater., Volume 61 (2013) no. 9, pp. 3347-3359 | DOI

[143] V. V. Bulatov; A. S. Argon A stochastic model for continuum elasto-plastic behavior. I. Numerical approach and strain localization, Model. Simul. Mater. Sci. Eng., Volume 2 (1994) no. 2, pp. 167-184 | DOI

[144] J. D. Eshelby; R. E. Peierls The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Math. Phys. Eng. Sci., Volume 241 (1957) no. 1226, pp. 376-396 | DOI

[145] Soohyun Im; Zhen Chen; Jared M. Johnson; Pengyang Zhao; Geun Hee Yoo; Eun Soo Park; Yunzhi Wang; David A. Muller; Jinwoo Hwang Direct determination of structural heterogeneity in metallic glasses using four-dimensional scanning transmission electron microscopy, Ultramicroscopy, Volume 195 (2018), pp. 189-193 | DOI

[146] Mahoor Mehdikhani; Ilya Straumit; Larissa Gorbatikh; Stepan V. Lomov Detailed characterization of voids in multidirectional carbon fiber/epoxy composite laminates using X-ray micro-computed tomography, Compos. Part A Appl. Sci. Manuf., Volume 125 (2019), 105532 | DOI

[147] Christian Breite; Erich Schöberl; Mark Mavrogordato; Larissa Gorbatikh; Stepan Lomov; Yentl Swolfs Automated image analysis of ultrafast Synchrotron CT scans to experimentally characterise the fibre break development during in-situ tensile tests, 22nd International Conference on Composite Materials, Melbourne, Australia (2019)

[148] Xinchen Ni; Reed Kopp; Estelle Kalfon-Cohen; Carolina Furtado; Jeonyoon Lee; Albertino Arteiro; Gregor Borstnar et al. In situ synchrotron computed tomography study of nanoscale interlaminar reinforcement and thin-ply effects on damage progression in composite laminates, Compos. Part B Eng. (2021), 108623 | DOI

[149] E Schöberl; C Breite; S Rosini; Y Swolfs; MN Mavrogordato; I Sinclair; SM Spearing A novel particle-filled carbon-fibre reinforced polymer model composite tailored for the application of digital volume correlation and computed tomography, J. Compos. Mater. (2020), 0021998320966388 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Foreword: Plasticity and Solid State Physics

Samuel Forest; David Rodney

C. R. Phys (2021)


Characterization of the adhesion of thin film by Cross-Sectional Nanoindentation Analysis of the substrate edge chipping and the film delamination

Eric Felder; Sébastien Roy; Evelyne Darque-Ceretti

C. R. Méca (2011)


Design and synthesis of biobased epoxy thermosets from biorenewable resources

Camille François; Sylvie Pourchet; Gilles Boni; ...

C. R. Chim (2017)