Comptes Rendus
A Riemannian approach to strain measures in nonlinear elasticity
[Une approche riemannienne vers des mesures des deformation en élasticité non linéaire]
Comptes Rendus. Mécanique, Volume 342 (2014) no. 4, pp. 254-257.

L'énergie isotrope de Hencky est une mesure naturelle de la distance du gradient de déformation à l'ensemble des rotations rigides SO(n) dans la métrique riemanienne canonique du groupe linéaire GL(n). Le principe d'indifférence matérielle exige que la métrique soit GL(n)-invariante à gauche, et l'isotropie implique son invariance à droite par O(n). Ces deux conditions sont uniquement satisfaites par une famille à trois paramètres de métriques riemaniennes sur l'espace tangent à GL(n). On note cependant que le résultat final se révèle, en essence, indépendant des paramètres choisis. Pour obtenir ce résultat, on effectue une paramétrisation des géodésiques de GL(n) et l'on résout un problème de minimisation qui fait intervenir le logarithme de matrices non symétriques.

The isotropic Hencky strain energy appears naturally as a distance measure of the deformation gradient to the set SO(n) of rigid rotations in the canonical left-invariant Riemannian metric on the general linear group GL(n). Objectivity requires the Riemannian metric to be left-GL(n)-invariant, isotropy requires the Riemannian metric to be right-O(n)-invariant. The latter two conditions are only satisfied for a three-parameter family of Riemannian metrics on the tangent space of GL(n). Surprisingly, the final result is basically independent of the chosen parameters.

In deriving the result, geodesics on GL(n) have to be parameterized and a novel minimization problem, involving the matrix logarithm for non-symmetric arguments, has to be solved.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2013.12.005
Keywords: Nonlinear elasticity, Geodesic distance, Hencky strain, Polar decomposition
Mots-clés : Élasticité non linéaire, Distance géodésique, Déformation de Hencky, Décomposition polaire

Patrizio Neff 1 ; Bernhard Eidel 2 ; Frank Osterbrink 1 ; Robert Martin 1

1 Chair for Nonlinear Analysis and Modelling, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany
2 Institute of Mechanics, University of Duisburg-Essen, Universitätsstraße 15, 45141 Essen, Germany
@article{CRMECA_2014__342_4_254_0,
     author = {Patrizio Neff and Bernhard Eidel and Frank Osterbrink and Robert Martin},
     title = {A {Riemannian} approach to strain measures in nonlinear elasticity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {254--257},
     publisher = {Elsevier},
     volume = {342},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crme.2013.12.005},
     language = {en},
}
TY  - JOUR
AU  - Patrizio Neff
AU  - Bernhard Eidel
AU  - Frank Osterbrink
AU  - Robert Martin
TI  - A Riemannian approach to strain measures in nonlinear elasticity
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 254
EP  - 257
VL  - 342
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2013.12.005
LA  - en
ID  - CRMECA_2014__342_4_254_0
ER  - 
%0 Journal Article
%A Patrizio Neff
%A Bernhard Eidel
%A Frank Osterbrink
%A Robert Martin
%T A Riemannian approach to strain measures in nonlinear elasticity
%J Comptes Rendus. Mécanique
%D 2014
%P 254-257
%V 342
%N 4
%I Elsevier
%R 10.1016/j.crme.2013.12.005
%G en
%F CRMECA_2014__342_4_254_0
Patrizio Neff; Bernhard Eidel; Frank Osterbrink; Robert Martin. A Riemannian approach to strain measures in nonlinear elasticity. Comptes Rendus. Mécanique, Volume 342 (2014) no. 4, pp. 254-257. doi : 10.1016/j.crme.2013.12.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.12.005/

[1] H. Hencky Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen, Z. Tech. Phys., Volume 9 (1928), pp. 215-220

[2] P. Neff; J. Lankeit; A. Madeo On Grioli's minimum property and its relation to Cauchy's polar decomposition, Int. J. Eng. Sci. (2014) (in press)

[3] P. Neff; I. Münch Curl bounds Grad on SO(3), ESAIM: Control Optim. Calc. Var., Volume 14 (2008) no. 1, pp. 148-159

[4] A. Mielke Finite elastoplasticity, Lie groups and geodesics on SL(d) (P. Newton; P. Holmes; A. Weinstein, eds.), Geometry, Mechanics, and Dynamics, Springer, New York, 2002, pp. 61-90

[5] P. Neff, R. Martin, Minimal geodesics on GL(n) for left invariant Riemannian metrics which are right invariant under O(n), in preparation.

[6] P. Neff; Y. Nakatsukasa; A. Fischle A logarithmic minimization property of the unitary polar factor in the spectral norm and the Frobenius matrix norm, SIAM J. Matrix Anal. (2014) (in press) | arXiv

[7] P. Neff, B. Eidel, F. Osterbrink, R. Martin, The isotropic Hencky strain energy logU2 measures the geodesic distance of the deformation gradient FGL+(n) to SO(n) in the unique left-invariant Riemannian metric on GL+(n), which is also right O(n)-invariant, in preparation.

  • Lev Borisov; Andreas Fischle; Patrizio Neff Optimality of the relaxed polar factors by a characterization of the set of real square roots of real symmetric matrices, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 99 (2019) no. 6 | DOI:10.1002/zamm.201800120
  • Robert J. Martin; Ionel-Dumitrel Ghiba; Patrizio Neff A non-ellipticity result, or the impossible taming of the logarithmic strain measure, International Journal of Non-Linear Mechanics, Volume 102 (2018), pp. 147-158 | DOI:10.1016/j.ijnonlinmec.2018.02.011
  • Lev Borisov; Patrizio Neff; Suvrit Sra; Christian Thiel The sum of squared logarithms inequality in arbitrary dimensions, Linear Algebra and its Applications, Volume 528 (2017), p. 124 | DOI:10.1016/j.laa.2016.06.026
  • Patrizio Neff; Bernhard Eidel; Robert J. Martin Geometry of Logarithmic Strain Measures in Solid Mechanics, Archive for Rational Mechanics and Analysis, Volume 222 (2016) no. 2, pp. 507-572 | DOI:10.1007/s00205-016-1007-x
  • Zdeněk Fiala Geometry of finite deformations and time-incremental analysis, International Journal of Non-Linear Mechanics, Volume 81 (2016), pp. 230-244 | DOI:10.1016/j.ijnonlinmec.2016.01.019
  • Giuseppe Montella; Sanjay Govindjee; Patrizio Neff The Exponentiated Hencky Strain Energy in Modeling Tire Derived Material for Moderately Large Deformations, Journal of Engineering Materials and Technology, Volume 138 (2016) no. 3 | DOI:10.1115/1.4032749
  • Patrizio Neff; Robert J. Martin Minimal geodesics on GL(n) for left-invariant, right-O(n)-invariant Riemannian metrics, Journal of Geometric Mechanics, Volume 8 (2016) no. 3, p. 323 | DOI:10.3934/jgm.2016010
  • Patrizio Neff; Ingo Münch; Robert Martin Rediscovering GF Becker’s early axiomatic deduction of a multiaxial nonlinear stress–strain relation based on logarithmic strain, Mathematics and Mechanics of Solids, Volume 21 (2016) no. 7, p. 856 | DOI:10.1177/1081286514542296
  • Lev Borisov; Patrizio Neff; Suvrit Sra; Christian Thiel The sum of squared logarithms inequality in arbitrary dimensions, PAMM, Volume 16 (2016) no. 1, p. 665 | DOI:10.1002/pamm.201610321
  • Robert J. Martin; Patrizio Neff Some remarks on the monotonicity of primary matrix functions on the set of symmetric matrices, Archive of Applied Mechanics, Volume 85 (2015) no. 12, pp. 1761-1778 | DOI:10.1007/s00419-015-1017-4
  • Patrizio Neff; Mircea Bîrsan; Frank Osterbrink Existence Theorem for Geometrically Nonlinear Cosserat Micropolar Model Under Uniform Convexity Requirements, Journal of Elasticity, Volume 121 (2015) no. 1, p. 119 | DOI:10.1007/s10659-015-9517-6
  • Waldemar Pompe; Patrizio Neff On the generalized sum of squared logarithms inequality, Journal of Inequalities and Applications, Volume 2015 (2015) no. 1 | DOI:10.1186/s13660-015-0593-8
  • Waldemar Pompe; Patrizio Neff On the generalised sum of squared logarithms inequality, Journal of Inequalities and Applications, Volume 2015 (2015) no. 1 | DOI:10.1186/s13660-015-0623-6
  • Johannes Lankeit; Patrizio Neff; Yuji Nakatsukasa The minimization of matrix logarithms: On a fundamental property of the unitary polar factor, Linear Algebra and its Applications, Volume 449 (2014), p. 28 | DOI:10.1016/j.laa.2014.02.012
  • Patrizio Neff; Ionel‐Dumitrel Ghiba; Johannes Lankeit; Robert Martin Rank‐one convexity and polyconvexity of Hencky‐type energies, PAMM, Volume 14 (2014) no. 1, p. 735 | DOI:10.1002/pamm.201410350
  • Patrizio Neff; Yuji Nakatsukasa; Andreas Fischle A Logarithmic Minimization Property of the Unitary Polar Factor in the Spectral and Frobenius Norms, SIAM Journal on Matrix Analysis and Applications, Volume 35 (2014) no. 3, p. 1132 | DOI:10.1137/130909949

Cité par 16 documents. Sources : Crossref, NASA ADS

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: