Comptes Rendus
A Riemannian approach to strain measures in nonlinear elasticity
Comptes Rendus. Mécanique, Volume 342 (2014) no. 4, pp. 254-257.

The isotropic Hencky strain energy appears naturally as a distance measure of the deformation gradient to the set SO(n) of rigid rotations in the canonical left-invariant Riemannian metric on the general linear group GL(n). Objectivity requires the Riemannian metric to be left-GL(n)-invariant, isotropy requires the Riemannian metric to be right-O(n)-invariant. The latter two conditions are only satisfied for a three-parameter family of Riemannian metrics on the tangent space of GL(n). Surprisingly, the final result is basically independent of the chosen parameters.

In deriving the result, geodesics on GL(n) have to be parameterized and a novel minimization problem, involving the matrix logarithm for non-symmetric arguments, has to be solved.

L'énergie isotrope de Hencky est une mesure naturelle de la distance du gradient de déformation à l'ensemble des rotations rigides SO(n) dans la métrique riemanienne canonique du groupe linéaire GL(n). Le principe d'indifférence matérielle exige que la métrique soit GL(n)-invariante à gauche, et l'isotropie implique son invariance à droite par O(n). Ces deux conditions sont uniquement satisfaites par une famille à trois paramètres de métriques riemaniennes sur l'espace tangent à GL(n). On note cependant que le résultat final se révèle, en essence, indépendant des paramètres choisis. Pour obtenir ce résultat, on effectue une paramétrisation des géodésiques de GL(n) et l'on résout un problème de minimisation qui fait intervenir le logarithme de matrices non symétriques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2013.12.005
Keywords: Nonlinear elasticity, Geodesic distance, Hencky strain, Polar decomposition
Mot clés : Élasticité non linéaire, Distance géodésique, Déformation de Hencky, Décomposition polaire

Patrizio Neff 1; Bernhard Eidel 2; Frank Osterbrink 1; Robert Martin 1

1 Chair for Nonlinear Analysis and Modelling, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany
2 Institute of Mechanics, University of Duisburg-Essen, Universitätsstraße 15, 45141 Essen, Germany
@article{CRMECA_2014__342_4_254_0,
     author = {Patrizio Neff and Bernhard Eidel and Frank Osterbrink and Robert Martin},
     title = {A {Riemannian} approach to strain measures in nonlinear elasticity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {254--257},
     publisher = {Elsevier},
     volume = {342},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crme.2013.12.005},
     language = {en},
}
TY  - JOUR
AU  - Patrizio Neff
AU  - Bernhard Eidel
AU  - Frank Osterbrink
AU  - Robert Martin
TI  - A Riemannian approach to strain measures in nonlinear elasticity
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 254
EP  - 257
VL  - 342
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2013.12.005
LA  - en
ID  - CRMECA_2014__342_4_254_0
ER  - 
%0 Journal Article
%A Patrizio Neff
%A Bernhard Eidel
%A Frank Osterbrink
%A Robert Martin
%T A Riemannian approach to strain measures in nonlinear elasticity
%J Comptes Rendus. Mécanique
%D 2014
%P 254-257
%V 342
%N 4
%I Elsevier
%R 10.1016/j.crme.2013.12.005
%G en
%F CRMECA_2014__342_4_254_0
Patrizio Neff; Bernhard Eidel; Frank Osterbrink; Robert Martin. A Riemannian approach to strain measures in nonlinear elasticity. Comptes Rendus. Mécanique, Volume 342 (2014) no. 4, pp. 254-257. doi : 10.1016/j.crme.2013.12.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.12.005/

[1] H. Hencky Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen, Z. Tech. Phys., Volume 9 (1928), pp. 215-220

[2] P. Neff; J. Lankeit; A. Madeo On Grioli's minimum property and its relation to Cauchy's polar decomposition, Int. J. Eng. Sci. (2014) (in press)

[3] P. Neff; I. Münch Curl bounds Grad on SO(3), ESAIM: Control Optim. Calc. Var., Volume 14 (2008) no. 1, pp. 148-159

[4] A. Mielke Finite elastoplasticity, Lie groups and geodesics on SL(d) (P. Newton; P. Holmes; A. Weinstein, eds.), Geometry, Mechanics, and Dynamics, Springer, New York, 2002, pp. 61-90

[5] P. Neff, R. Martin, Minimal geodesics on GL(n) for left invariant Riemannian metrics which are right invariant under O(n), in preparation.

[6] P. Neff; Y. Nakatsukasa; A. Fischle A logarithmic minimization property of the unitary polar factor in the spectral norm and the Frobenius matrix norm, SIAM J. Matrix Anal. (2014) (in press) | arXiv

[7] P. Neff, B. Eidel, F. Osterbrink, R. Martin, The isotropic Hencky strain energy logU2 measures the geodesic distance of the deformation gradient FGL+(n) to SO(n) in the unique left-invariant Riemannian metric on GL+(n), which is also right O(n)-invariant, in preparation.

Cited by Sources:

Comments - Policy