[Une approche riemannienne vers des mesures des deformation en élasticité non linéaire]
L'énergie isotrope de Hencky est une mesure naturelle de la distance du gradient de déformation à l'ensemble des rotations rigides
The isotropic Hencky strain energy appears naturally as a distance measure of the deformation gradient to the set
In deriving the result, geodesics on
Accepté le :
Publié le :
Mots-clés : Élasticité non linéaire, Distance géodésique, Déformation de Hencky, Décomposition polaire
Patrizio Neff 1 ; Bernhard Eidel 2 ; Frank Osterbrink 1 ; Robert Martin 1
@article{CRMECA_2014__342_4_254_0, author = {Patrizio Neff and Bernhard Eidel and Frank Osterbrink and Robert Martin}, title = {A {Riemannian} approach to strain measures in nonlinear elasticity}, journal = {Comptes Rendus. M\'ecanique}, pages = {254--257}, publisher = {Elsevier}, volume = {342}, number = {4}, year = {2014}, doi = {10.1016/j.crme.2013.12.005}, language = {en}, }
TY - JOUR AU - Patrizio Neff AU - Bernhard Eidel AU - Frank Osterbrink AU - Robert Martin TI - A Riemannian approach to strain measures in nonlinear elasticity JO - Comptes Rendus. Mécanique PY - 2014 SP - 254 EP - 257 VL - 342 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2013.12.005 LA - en ID - CRMECA_2014__342_4_254_0 ER -
Patrizio Neff; Bernhard Eidel; Frank Osterbrink; Robert Martin. A Riemannian approach to strain measures in nonlinear elasticity. Comptes Rendus. Mécanique, Volume 342 (2014) no. 4, pp. 254-257. doi : 10.1016/j.crme.2013.12.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.12.005/
[1] Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen, Z. Tech. Phys., Volume 9 (1928), pp. 215-220
[2] On Grioli's minimum property and its relation to Cauchy's polar decomposition, Int. J. Eng. Sci. (2014) (in press)
[3] Curl bounds Grad on
[4] Finite elastoplasticity, Lie groups and geodesics on
[5] P. Neff, R. Martin, Minimal geodesics on
[6] A logarithmic minimization property of the unitary polar factor in the spectral norm and the Frobenius matrix norm, SIAM J. Matrix Anal. (2014) (in press) | arXiv
[7] P. Neff, B. Eidel, F. Osterbrink, R. Martin, The isotropic Hencky strain energy
- Optimality of the relaxed polar factors by a characterization of the set of real square roots of real symmetric matrices, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 99 (2019) no. 6 | DOI:10.1002/zamm.201800120
- A non-ellipticity result, or the impossible taming of the logarithmic strain measure, International Journal of Non-Linear Mechanics, Volume 102 (2018), pp. 147-158 | DOI:10.1016/j.ijnonlinmec.2018.02.011
- The sum of squared logarithms inequality in arbitrary dimensions, Linear Algebra and its Applications, Volume 528 (2017), p. 124 | DOI:10.1016/j.laa.2016.06.026
- Geometry of Logarithmic Strain Measures in Solid Mechanics, Archive for Rational Mechanics and Analysis, Volume 222 (2016) no. 2, pp. 507-572 | DOI:10.1007/s00205-016-1007-x
- Geometry of finite deformations and time-incremental analysis, International Journal of Non-Linear Mechanics, Volume 81 (2016), pp. 230-244 | DOI:10.1016/j.ijnonlinmec.2016.01.019
- The Exponentiated Hencky Strain Energy in Modeling Tire Derived Material for Moderately Large Deformations, Journal of Engineering Materials and Technology, Volume 138 (2016) no. 3 | DOI:10.1115/1.4032749
- Minimal geodesics on GL(n) for left-invariant, right-O(n)-invariant Riemannian metrics, Journal of Geometric Mechanics, Volume 8 (2016) no. 3, p. 323 | DOI:10.3934/jgm.2016010
- Rediscovering GF Becker’s early axiomatic deduction of a multiaxial nonlinear stress–strain relation based on logarithmic strain, Mathematics and Mechanics of Solids, Volume 21 (2016) no. 7, p. 856 | DOI:10.1177/1081286514542296
- The sum of squared logarithms inequality in arbitrary dimensions, PAMM, Volume 16 (2016) no. 1, p. 665 | DOI:10.1002/pamm.201610321
- Some remarks on the monotonicity of primary matrix functions on the set of symmetric matrices, Archive of Applied Mechanics, Volume 85 (2015) no. 12, pp. 1761-1778 | DOI:10.1007/s00419-015-1017-4
- Existence Theorem for Geometrically Nonlinear Cosserat Micropolar Model Under Uniform Convexity Requirements, Journal of Elasticity, Volume 121 (2015) no. 1, p. 119 | DOI:10.1007/s10659-015-9517-6
- On the generalized sum of squared logarithms inequality, Journal of Inequalities and Applications, Volume 2015 (2015) no. 1 | DOI:10.1186/s13660-015-0593-8
- On the generalised sum of squared logarithms inequality, Journal of Inequalities and Applications, Volume 2015 (2015) no. 1 | DOI:10.1186/s13660-015-0623-6
- The minimization of matrix logarithms: On a fundamental property of the unitary polar factor, Linear Algebra and its Applications, Volume 449 (2014), p. 28 | DOI:10.1016/j.laa.2014.02.012
- Rank‐one convexity and polyconvexity of Hencky‐type energies, PAMM, Volume 14 (2014) no. 1, p. 735 | DOI:10.1002/pamm.201410350
- A Logarithmic Minimization Property of the Unitary Polar Factor in the Spectral and Frobenius Norms, SIAM Journal on Matrix Analysis and Applications, Volume 35 (2014) no. 3, p. 1132 | DOI:10.1137/130909949
Cité par 16 documents. Sources : Crossref, NASA ADS
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier