Comptes Rendus
Effect of T-stress on the mode-I fracture toughness of concrete
Comptes Rendus. Mécanique, Volume 342 (2014) no. 8, pp. 490-500.

T-stress expressions are provided for three-point bending (TPB) beams and compact tension (CT) specimens and then its influence on mode I fracture toughness of concrete is investigated. The study shows that T-stress is dependent on the specimen's geometry and the material's property as well, and for TPB and CT specimens of regular size, T-stress is so small that its consequences can be neglected. The study also indicates that concrete specimen size should be carefully chosen to make sure the existence of K-dominance ahead of the crack tip, thus fracture toughness extracted from these specimen configurations can be reliable.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2014.03.001
Keywords: Fracture mechanics, Concrete, Fracture toughness, T-stress

Yan-hua Zhao 1; Bo-han Xu 1

1 State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, PR China
@article{CRMECA_2014__342_8_490_0,
     author = {Yan-hua Zhao and Bo-han Xu},
     title = {Effect of {\protect\emph{T}-stress} on the {mode-I} fracture toughness of concrete},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {490--500},
     publisher = {Elsevier},
     volume = {342},
     number = {8},
     year = {2014},
     doi = {10.1016/j.crme.2014.03.001},
     language = {en},
}
TY  - JOUR
AU  - Yan-hua Zhao
AU  - Bo-han Xu
TI  - Effect of T-stress on the mode-I fracture toughness of concrete
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 490
EP  - 500
VL  - 342
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2014.03.001
LA  - en
ID  - CRMECA_2014__342_8_490_0
ER  - 
%0 Journal Article
%A Yan-hua Zhao
%A Bo-han Xu
%T Effect of T-stress on the mode-I fracture toughness of concrete
%J Comptes Rendus. Mécanique
%D 2014
%P 490-500
%V 342
%N 8
%I Elsevier
%R 10.1016/j.crme.2014.03.001
%G en
%F CRMECA_2014__342_8_490_0
Yan-hua Zhao; Bo-han Xu. Effect of T-stress on the mode-I fracture toughness of concrete. Comptes Rendus. Mécanique, Volume 342 (2014) no. 8, pp. 490-500. doi : 10.1016/j.crme.2014.03.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.03.001/

[1] M.L. Williams On the stress distribution at the base of a stationary crack, ASME J. Appl. Mech., Volume 24 (1957), pp. 109-114

[2] F. Erdogan; G.C. Sih On the crack extension in plates under plane loading and transverse shear, J. Basic Eng., Volume 85 (1963) no. 5, pp. 19-27

[3] G.C. Sih Strain-energy-density factor applied to mixed mode crack problems, Int. J. Fract., Volume 10 (1974) no. 3, pp. 305-321

[4] X.M. Kong; N. Schluter; W. Dahl Effect of triaxial stress on mixed-mode fracture, Eng. Fract. Mech., Volume 52 (1995) no. 2, pp. 379-388

[5] J. Williams; P.D. Ewing Fracture under complex stress – the angled crack problem, Int. J. Fract., Volume 8 (1972) no. 4, pp. 441-446

[6] K. Sedighiani; J. Mosayebnejad; H. Ehsasi; H.R. Sahraei The effect of T-stress on the brittle fracture under mixed mode loading, Eng. Fract. Mech., Volume 10 (2011), pp. 774-779

[7] Y. Ueda; K. Ikeda; T. Yao; M. Aoki Characteristics of brittle fracture under general combined modes including those under bi-axial tensile loads, Eng. Fract. Mech., Volume 18 (1983), pp. 1131-1158

[8] D.G. Smith; M.R. Ayatollahi; M.J. Pavier The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading, Fatigue Fract. Eng. Mater. Struct., Volume 24 (2001), pp. 137-150

[9] M.R. Ayatollahi; M.R.M. Aliha Cracked Brazilian disc specimen subjected to mode II deformation, Eng. Fract. Mech., Volume 72 (2005), pp. 493-503

[10] T. Fett; D. Munz T-stress and crack path stability of DCDC specimens, Int. J. Fract., Volume 124 (2003), p. L165-L170

[11] B. Cotterell; J.R. Rice Slightly curved or kinked cracks, Int. J. Fract., Volume 16 (1980), pp. 155-169

[12] M. Hadj Meliani; Y.G. Matvienko; G. Pluvinage Two-parameter fracture criterion (Kρ,cTef,c) based on notch fracture mechanics, Int. J. Fract., Volume 167 (2011), pp. 173-182

[13] M.R. Ayatollahi; K. Sedighiani A T-stress controlled specimen for mixed mode fracture experiments on brittle materials, Eur. J. Mech. A, Solids, Volume 36 (2012), pp. 83-93

[14] M.F. Kaplan Crack propagation and the fracture of concrete, J. Am. Concr. Inst., Volume 58 (1961) no. 5, pp. 591-610

[15] F. Dubois; R. Moutou Pitti; B. Picoux; C. Petit Finite element model for crack growth process in concrete bituminous, Adv. Eng. Softw., Volume 44 (2012), pp. 35-43

[16] P.S. Leevers; J.C. Radon Inherent stress biaxiality in various fracture specimen geometries, Int. J. Fract., Volume 19 (1982), pp. 311-325

[17] M.R. Ayatollahi; M.J. Pavier; D.J. Smith Mode I cracks subjected to large T-stresses, Int. J. Fract., Volume 117 (2002), pp. 159-174

[18] G.V. Guinea; J. Pastor; J. Planas; M. Elices Stress intensity factor, compliance and CMOD for a general three-point-bend beam, Int. J. Fract., Volume 89 (1998), pp. 103-116

[19] B.L. Karihaloo; Q.Z. Xiao Higher order terms of the crack tip asymptotic field for a notched three-point bend beam, Int. J. Fract., Volume 112 (2001), pp. 111-128

[20] D. Taylor; M. Merlo; R. Pegley; M.P. Cavatorta The effect of stress concentrations on the fracture strength of polymethylmethacrylate, Mater. Sci. Eng. A, Volume 382 (2004), pp. 288-294

[21] R.A. Schmidt A microcrack model and its significance to hydraulic fracturing and fracture toughness testing, Rolla, MS, USA (1980), pp. 581-590

[22] Z.P. Bažant; Z.Z. Li Modulus of rupture: size effect due to fracture initiation in boundary layer, J. Struct. Eng., Volume 121 (1995) no. 4, pp. 739-746

[23] ASTM E399 12ε1, standard test method for linear-elastic plane-strain fracture toughness KIC of metallic materials, ASTM International, PA, USA, 2013

[24] K. Wallin A simple fracture mechanical interpretation of size effects in concrete fracture toughness tests, Eng. Fract. Mech., Volume 99 (2013), pp. 18-29

[25] Y.S. Jenq; S.P. Shah Two-parameter fracture model for concrete, J. Eng. Mech. ASCE, Volume 111 (1985) no. 10, pp. 1227-1241

[26] B.L. Karihaloo; P. Nallathambi Effective crack model for the determination of fracture toughness KIcs of concrete, Eng. Fract. Mech., Volume 35 (1990) no. 4–5, pp. 637-645

[27] S.L. Xu; H.W. Reinhardt Determination of double-K criterion for crack propagation in quasi-brittle fracture. Part I: experimental investigation of crack propagation, Int. J. Fract., Volume 98 (1999), pp. 111-149

[28] M. de Moura; J.J.L. Morais; N. Dourado A new data reduction scheme for mode I wood fracture characterization using the double cantilever beam test, Eng. Fract. Mech., Volume 75 (2008), pp. 3852-3865

[29] M. de Moura; N. Dourado; J. Morais Crack equivalent based method applied to wood fracture characterization using the single edge notched-three point bending test, Eng. Fract. Mech., Volume 77 (2010), pp. 510-520

[30] R.P. Ojdrovic; H.J. Petroski Fracture behavior of notched concrete cylinder, J. Eng. Mech. ASCE, Volume 113 (1987) no. 12, pp. 1551-1564

[31] F. Xu; Z.M. Wu; J.J. Zheng; Y.H. Zhao; K. Liu Crack extension resistance curve of concrete considering variation of FPZ length, J. Mater. Civ. Eng. ASCE, Volume 23 (2011) no. 5, pp. 703-710

[32] L.B. Qing; Q.B. Li A theoretical method for determining initiation toughness based on experimental peak load, Eng. Fract. Mech., Volume 99 (2013), pp. 295-305

[33] DL/T 5332-2005, specification for fracture test of hydraulic concrete, China Electric Power Press, Beijing, 2005

[34] S.L. Xu; H.W. Reinhardt Determination of double-K criterion for crack propagation in quasi-brittle materials. Part II: analytical evaluating and practical measuring methods for three-point bending notched beams, Int. J. Fract., Volume 98 (1999), pp. 151-177

[35] Y.S. Jenq; S.P. Shah A fracture toughness criterion for concrete, Eng. Fract. Mech., Volume 21 (1985) no. 5, pp. 1055-1069

[36] Y.H. Zhao The analytical study on the energy in the fracture process of concrete, Dalian University of Technology, Dalian, China, 2002 doctoral dissertation (in Chinese)

[37] T. Fett Stress Intensity Factors, T-Stresses, Weight Functions, Institute of Ceramics in Mechanical Engineering, University of Karlsruhe, Karlsruhe, Germany, 2008

[38] S.L. Xu; D. Bu; X.F. Zhang A study on double-K fracture parameters by using wedge-splitting test on compact tension specimens of various sizes, China Civ. Eng. J., Volume 41 (2008) no. 2, pp. 70-76 (in Chinese)

Cited by Sources:

Comments - Policy