Comptes Rendus
Development of secondary flows in viscoelastic curved ducts and the influence of outlet region
Comptes Rendus. Mécanique, Volume 342 (2014) no. 8, pp. 478-484.

This paper presents numerical simulations of Newtonian and viscoelastic flows through a 180° curved duct of square cross section with a long straight outlet region. A particular attention is paid to the development of the flow in the output rectangular region after the curved part. The viscoelastic fluid is modeled using the constitutive equation proposed by Phan–Thien–Tanner (PTT). The numerical results, obtained with a finite-volume method, are shown for three different Dean numbers (125,137,150) and for three Deborah numbers (0.1,0.2,0.3). The necessary outlet length to impose boundary conditions is presented and discussed for these cases. Streamlines and vortex formation are shown to illustrate and analyze the evolution of the secondary flow in this region.

Ce travail présente des résultats numériques concernant l'étude des fluides newtoniens et viscoélastiques passant par une conduite courbée à 180°, de section carrée, avec une longue zone droite de sortie. Une attention particulière est portée à l'analyse de l'écoulement dans la région rectangulaire de sortie après la partie incurvée. Le fluide viscoélastique est modélisé à l'aide de l'équation constitutive proposée par Phan–Thien–Tanner (PTT). Les résultats numériques, obtenus avec la méthode des volumes finis, sont présentés pour trois nombres de Dean (125,137,150) et pour trois nombres de Deborah (0,1,0,2,0,3). La longueur du domaine de calcul nécessaire pour bien imposer les conditions aux limites de sortie est présentée et discutée. Les lignes de courant montrant la formation de l'écoulement secondaire sont montrées pour illustrer le comportement de l'écoulement dans cette région.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2014.04.003
Keywords: Dean vortex, Deborah number, Viscoelastic flow simulation, Curved duct
Mots-clés : Vortex de Dean, Nombre de Deborah, Simulation de fluide viscoélastique, Conduite courbée

Gilmar Mompean 1; Tibisay Coromoto Zambrano 2; Zaynab Salloum 3

1 Laboratoire de mécanique de Lille, UMR CNRS 8107, Polytech-Lille, Cité scientifique, 59665 Villeneuve-d'Ascq cedex, France
2 Université centrale du Venezuela, Cité universitaire, 1053 Caracas, Venezuela
3 Université libanaise, Laboratoire des mathématiques–EDST, Hadath, Lebanon
@article{CRMECA_2014__342_8_478_0,
     author = {Gilmar Mompean and Tibisay Coromoto Zambrano and Zaynab Salloum},
     title = {Development of secondary flows in viscoelastic curved ducts and the influence of outlet region},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {478--484},
     publisher = {Elsevier},
     volume = {342},
     number = {8},
     year = {2014},
     doi = {10.1016/j.crme.2014.04.003},
     language = {en},
}
TY  - JOUR
AU  - Gilmar Mompean
AU  - Tibisay Coromoto Zambrano
AU  - Zaynab Salloum
TI  - Development of secondary flows in viscoelastic curved ducts and the influence of outlet region
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 478
EP  - 484
VL  - 342
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2014.04.003
LA  - en
ID  - CRMECA_2014__342_8_478_0
ER  - 
%0 Journal Article
%A Gilmar Mompean
%A Tibisay Coromoto Zambrano
%A Zaynab Salloum
%T Development of secondary flows in viscoelastic curved ducts and the influence of outlet region
%J Comptes Rendus. Mécanique
%D 2014
%P 478-484
%V 342
%N 8
%I Elsevier
%R 10.1016/j.crme.2014.04.003
%G en
%F CRMECA_2014__342_8_478_0
Gilmar Mompean; Tibisay Coromoto Zambrano; Zaynab Salloum. Development of secondary flows in viscoelastic curved ducts and the influence of outlet region. Comptes Rendus. Mécanique, Volume 342 (2014) no. 8, pp. 478-484. doi : 10.1016/j.crme.2014.04.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.04.003/

[1] W.R. Dean Fluid motion in a curved channel, Proc. R. Soc. Lond. Ser. A, Volume 121 (1928), pp. 402-420

[2] S.A. Berger; L. Talbot; L.-S. Yao Flow in curved pipes, Annu. Rev. Fluid Mech., Volume 15 (1983), pp. 461-512

[3] B. Bara; K. Nandakumar; J.H. Masliyah An experimental and numerical study of the Dean problem: flow development towards two-dimensional multiple solutions, J. Fluid Mech., Volume 244 (1992), pp. 339-376

[4] A. Bhunia; C.L. Chen Flow characteristics in a curved rectangular channel with variable cross-sectional area, J. Fluids Eng., Volume 131 (2009), pp. 1-17

[5] L. Helin; L. Thais; G. Mompean Numerical simulation of viscoelastic Dean vortices in a curve duct, J. Non-Newton. Fluid Mech., Volume 156 (2009), pp. 84-94

[6] M. Boutabaa; L. Helin; G. Mompean; L. Thais Numerical study of Dean vortices in developing Newtonian and viscoelastic flows through a curved duct of square cross-section, C. R. Mecanique, Volume 337 (2009), pp. 40-47

[7] T. Zambrano; G. Mompean; Z. Salloum Numerical study of a viscoelastic fluid in the output region of curved duct using a finite volume method, ICNAAM 2013, Rhodes, Greece, 21–27 September 2013 (AIP Conf. Proc.), Volume vol. 1558 (2013), p. 1414

[8] G. Mompean; L. Thais Finite volume simulation of viscoelastic flows in general orthogonal coordinates, Math. Comput. Simul., Volume 80 (2010), pp. 2185-2199

[9] S.B. Pope The calculation of turbulent recirculating flows in general orthogonal coordinates, J. Comput. Phys., Volume 26 (1978), pp. 197-217

[10] B. Leonard A stable accurate convective modeling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng., Volume 19 (1979), pp. 59-98

[11] F.H. Harlow; J.E. Welch Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, Volume 8 (1965), pp. 2182-2189

Cited by Sources:

Comments - Policy