This paper presents numerical simulations of Newtonian and viscoelastic flows through a 180° curved duct of square cross section with a long straight outlet region. A particular attention is paid to the development of the flow in the output rectangular region after the curved part. The viscoelastic fluid is modeled using the constitutive equation proposed by Phan–Thien–Tanner (PTT). The numerical results, obtained with a finite-volume method, are shown for three different Dean numbers and for three Deborah numbers . The necessary outlet length to impose boundary conditions is presented and discussed for these cases. Streamlines and vortex formation are shown to illustrate and analyze the evolution of the secondary flow in this region.
Ce travail présente des résultats numériques concernant l'étude des fluides newtoniens et viscoélastiques passant par une conduite courbée à 180°, de section carrée, avec une longue zone droite de sortie. Une attention particulière est portée à l'analyse de l'écoulement dans la région rectangulaire de sortie après la partie incurvée. Le fluide viscoélastique est modélisé à l'aide de l'équation constitutive proposée par Phan–Thien–Tanner (PTT). Les résultats numériques, obtenus avec la méthode des volumes finis, sont présentés pour trois nombres de Dean et pour trois nombres de Deborah . La longueur du domaine de calcul nécessaire pour bien imposer les conditions aux limites de sortie est présentée et discutée. Les lignes de courant montrant la formation de l'écoulement secondaire sont montrées pour illustrer le comportement de l'écoulement dans cette région.
Accepted:
Published online:
Mots-clés : Vortex de Dean, Nombre de Deborah, Simulation de fluide viscoélastique, Conduite courbée
Gilmar Mompean 1; Tibisay Coromoto Zambrano 2; Zaynab Salloum 3
@article{CRMECA_2014__342_8_478_0, author = {Gilmar Mompean and Tibisay Coromoto Zambrano and Zaynab Salloum}, title = {Development of secondary flows in viscoelastic curved ducts and the influence of outlet region}, journal = {Comptes Rendus. M\'ecanique}, pages = {478--484}, publisher = {Elsevier}, volume = {342}, number = {8}, year = {2014}, doi = {10.1016/j.crme.2014.04.003}, language = {en}, }
TY - JOUR AU - Gilmar Mompean AU - Tibisay Coromoto Zambrano AU - Zaynab Salloum TI - Development of secondary flows in viscoelastic curved ducts and the influence of outlet region JO - Comptes Rendus. Mécanique PY - 2014 SP - 478 EP - 484 VL - 342 IS - 8 PB - Elsevier DO - 10.1016/j.crme.2014.04.003 LA - en ID - CRMECA_2014__342_8_478_0 ER -
%0 Journal Article %A Gilmar Mompean %A Tibisay Coromoto Zambrano %A Zaynab Salloum %T Development of secondary flows in viscoelastic curved ducts and the influence of outlet region %J Comptes Rendus. Mécanique %D 2014 %P 478-484 %V 342 %N 8 %I Elsevier %R 10.1016/j.crme.2014.04.003 %G en %F CRMECA_2014__342_8_478_0
Gilmar Mompean; Tibisay Coromoto Zambrano; Zaynab Salloum. Development of secondary flows in viscoelastic curved ducts and the influence of outlet region. Comptes Rendus. Mécanique, Volume 342 (2014) no. 8, pp. 478-484. doi : 10.1016/j.crme.2014.04.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.04.003/
[1] Fluid motion in a curved channel, Proc. R. Soc. Lond. Ser. A, Volume 121 (1928), pp. 402-420
[2] Flow in curved pipes, Annu. Rev. Fluid Mech., Volume 15 (1983), pp. 461-512
[3] An experimental and numerical study of the Dean problem: flow development towards two-dimensional multiple solutions, J. Fluid Mech., Volume 244 (1992), pp. 339-376
[4] Flow characteristics in a curved rectangular channel with variable cross-sectional area, J. Fluids Eng., Volume 131 (2009), pp. 1-17
[5] Numerical simulation of viscoelastic Dean vortices in a curve duct, J. Non-Newton. Fluid Mech., Volume 156 (2009), pp. 84-94
[6] Numerical study of Dean vortices in developing Newtonian and viscoelastic flows through a curved duct of square cross-section, C. R. Mecanique, Volume 337 (2009), pp. 40-47
[7] Numerical study of a viscoelastic fluid in the output region of curved duct using a finite volume method, ICNAAM 2013, Rhodes, Greece, 21–27 September 2013 (AIP Conf. Proc.), Volume vol. 1558 (2013), p. 1414
[8] Finite volume simulation of viscoelastic flows in general orthogonal coordinates, Math. Comput. Simul., Volume 80 (2010), pp. 2185-2199
[9] The calculation of turbulent recirculating flows in general orthogonal coordinates, J. Comput. Phys., Volume 26 (1978), pp. 197-217
[10] A stable accurate convective modeling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng., Volume 19 (1979), pp. 59-98
[11] Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, Volume 8 (1965), pp. 2182-2189
Cited by Sources:
Comments - Policy