[Explosion de solutions d'équations hyperboliques quasi linéaires avec
The aim of this paper is to study an initial and homogeneous boundary value problem to a quasilinear hyperbolic equation with a
Le but de cet article est d'étudier un problème aux limites initial et homogène défini par une équation hyperbolique quasi linéaire avec un
Accepté le :
Publié le :
Mots-clés : Quasilinéaire hyperbolique, Explosion en temps fini, Énergie initiale positive
Bin Guo 1, 2 ; Wenjie Gao 1
@article{CRMECA_2014__342_9_513_0, author = {Bin Guo and Wenjie Gao}, title = {Blow-up of solutions to quasilinear hyperbolic equations with $ p(x,t)${-Laplacian} and positive initial energy}, journal = {Comptes Rendus. M\'ecanique}, pages = {513--519}, publisher = {Elsevier}, volume = {342}, number = {9}, year = {2014}, doi = {10.1016/j.crme.2014.06.001}, language = {en}, }
TY - JOUR AU - Bin Guo AU - Wenjie Gao TI - Blow-up of solutions to quasilinear hyperbolic equations with $ p(x,t)$-Laplacian and positive initial energy JO - Comptes Rendus. Mécanique PY - 2014 SP - 513 EP - 519 VL - 342 IS - 9 PB - Elsevier DO - 10.1016/j.crme.2014.06.001 LA - en ID - CRMECA_2014__342_9_513_0 ER -
Bin Guo; Wenjie Gao. Blow-up of solutions to quasilinear hyperbolic equations with $ p(x,t)$-Laplacian and positive initial energy. Comptes Rendus. Mécanique, Volume 342 (2014) no. 9, pp. 513-519. doi : 10.1016/j.crme.2014.06.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.06.001/
[1] Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal., Volume 164 (2002), pp. 213-259
[2] Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, Germany, 2011
[3] Electrorheological Fluids: Modelling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000
[4] Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differ. Equ., Volume 109 (1994), pp. 295-308
[5] Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions, Nonlinear Anal., Volume 93 (2013), pp. 62-77
[6] Wave equation with
[7] Singular phenomena of solutions for nonlinear diffusion equations involving
[8] Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., Volume 340 (2008), pp. 687-698
[9] Instability and nonexistence of global solutions to nonlinear wave equations of the form
- Blow-up of solutions to fractional quasilinear hyperbolic problem, Analysis and Mathematical Physics, Volume 15 (2025) no. 2 | DOI:10.1007/s13324-025-01033-1
- An Effect of Decay Rates for Petrovsky Equation: Supercritical Weak Damping, Journal of Dynamical and Control Systems, Volume 31 (2025) no. 2 | DOI:10.1007/s10883-025-09731-6
- On the well-posedness and stability of an (α,β)-Laplacian nonlinearly damped coupled system with source terms of strong nonlinearities, Journal of Mathematical Analysis and Applications, Volume 545 (2025) no. 1, p. 129089 | DOI:10.1016/j.jmaa.2024.129089
- A Blow-Up Result for an
-Laplacian Coupled System with Variable-Exponent Damping and Source, Mediterranean Journal of Mathematics, Volume 22 (2025) no. 5 | DOI:10.1007/s00009-025-02896-1 - On the interaction between the viscoelasticity and the boundary variable-exponent nonlinearity in plate systems, Applicable Analysis, Volume 103 (2024) no. 16, p. 2923 | DOI:10.1080/00036811.2024.2327436
- On a biharmonic coupled system with non-standard nonlinearity: Existence, blow up and numerics, Asymptotic Analysis, Volume 138 (2024) no. 1-2, p. 69 | DOI:10.3233/asy-231891
- Asymptotic stability of solutions to quasilinear damped wave equations with variable sources, Izvestiya: Mathematics, Volume 88 (2024) no. 4, p. 794 | DOI:10.4213/im9499e
- Existence and Blow-up Study of a Quasilinear Wave Equation with Damping and Source Terms of Variable Exponents-type Acting on the Boundary, Journal of Dynamical and Control Systems, Volume 30 (2024) no. 2 | DOI:10.1007/s10883-024-09695-z
- Viscoelastic Wave Equation with Variable-Exponent Nonlinear Boundary Feedback, Journal of Dynamical and Control Systems, Volume 30 (2024) no. 4 | DOI:10.1007/s10883-024-09714-z
- Different aspects of blow-up property for a nonlinear wave equation, Partial Differential Equations in Applied Mathematics, Volume 11 (2024), p. 100879 | DOI:10.1016/j.padiff.2024.100879
- Asymptotic stability of solutions to quasilinear damped wave equations with variable sources, Известия Российской академии наук. Серия математическая, Volume 88 (2024) no. 4, p. 204 | DOI:10.4213/im9499
- A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior, AIMS Mathematics, Volume 8 (2023) no. 4, p. 7933 | DOI:10.3934/math.2023400
- Exponential decay and blow-up results for a viscoelastic equation with variable sources, Applicable Analysis, Volume 102 (2023) no. 3, p. 782 | DOI:10.1080/00036811.2021.1965581
- Well-posedness and decay in a system of hyperbolic and biharmonic-wave equations with variable exponents and weak dampings, Arabian Journal of Mathematics, Volume 12 (2023) no. 3, p. 513 | DOI:10.1007/s40065-023-00431-2
- Optimal energy decay rates for viscoelastic wave equations with nonlinearity of variable exponent, Electronic Journal of Differential Equations, Volume 2023 (2023) no. 01-??, p. 53 | DOI:10.58997/ejde.2023.53
- Existence and decay of solutions to coupled systems of nonlinear wave equations with variable exponents, Electronic Journal of Differential Equations, Volume 2023 (2023) no. 01-??, p. 73 | DOI:10.58997/ejde.2023.73
- Delayed wave equation with logarithmic variable-exponent nonlinearity, Electronic Research Archive, Volume 31 (2023) no. 5, p. 2974 | DOI:10.3934/era.2023150
- Timoshenko beams with variable‐exponent nonlinearity, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 9, p. 10246 | DOI:10.1002/mma.9116
- Stability Results for a Weakly Dissipative Viscoelastic Equation with Variable-Exponent Nonlinearity: Theory and Numerics, Mathematical and Computational Applications, Volume 28 (2023) no. 1, p. 5 | DOI:10.3390/mca28010005
- Theoretical and numerical decay results of a viscoelastic suspension bridge with variable exponents nonlinearity, Mathematische Nachrichten, Volume 296 (2023) no. 12, p. 5426 | DOI:10.1002/mana.202200338
- Existence and blow up of solutions for a Petrovsky equation with variable-exponents, SeMA Journal, Volume 80 (2023) no. 3, p. 393 | DOI:10.1007/s40324-022-00302-4
- Decay result in a problem of a nonlinearly damped wave equation with variable exponent, AIMS Mathematics, Volume 7 (2022) no. 2, p. 3067 | DOI:10.3934/math.2022170
- Theoretical and numerical study of the blow up in a nonlinear viscoelastic problem with variable-exponent and arbitrary positive energy, Acta Mathematica Scientia, Volume 42 (2022) no. 1, p. 141 | DOI:10.1007/s10473-022-0107-y
- On the existence and stability of a nonlinear wave system with variable exponents, Asymptotic Analysis, Volume 128 (2022) no. 2, p. 211 | DOI:10.3233/asy-211704
- Blow up of negative initial-energy solutions of a system of nonlinear wave equations with variable-exponent nonlinearities, Discrete Continuous Dynamical Systems - S, Volume 15 (2022) no. 5, p. 1233 | DOI:10.3934/dcdss.2021107
- On the decay of solutions of a viscoelastic wave equation with variable sources, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 14, p. 8389 | DOI:10.1002/mma.7141
- Theoretical and computational results of a wave equation with variable exponent and time-dependent nonlinear damping, Arabian Journal of Mathematics, Volume 10 (2021) no. 2, p. 443 | DOI:10.1007/s40065-021-00312-6
- Existence and blow up in a system of wave equations with nonstandard nonlinearities, Electronic Journal of Differential Equations, Volume 2021 (2021) no. 01-104 | DOI:10.58997/ejde.2021.91
- Blow-Up of Solutions for a Class Quasilinear Wave Equation with Nonlinearity Variable Exponents, Journal of Function Spaces, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/5546630
- Stable and unstable sets for damped nonlinear wave equations with variable exponent sources, Journal of Mathematical Physics, Volume 62 (2021) no. 1 | DOI:10.1063/5.0012177
- Energy estimates to the Cauchy problem of a weakly damped Klein‐Gordon equation with variable‐exponent nonlinearity, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 11, p. 8999 | DOI:10.1002/mma.7327
- Long-Time Behavior of Solutions to Von Karman Equations with Variable Sources, Mediterranean Journal of Mathematics, Volume 18 (2021) no. 6 | DOI:10.1007/s00009-021-01904-4
- Existence and blow-up of solutions for von Karman equations with time delay and variable exponents, Applied Mathematics and Computation, Volume 371 (2020), p. 124917 | DOI:10.1016/j.amc.2019.124917
- Asymptotic stability of solutions to quasilinear hyperbolic equations with variable sources, Computers Mathematics with Applications, Volume 79 (2020) no. 4, p. 1012 | DOI:10.1016/j.camwa.2019.08.016
- A class of nonlinear parabolic equations with anisotropic nonstandard growth conditions, Journal of Mathematical Physics, Volume 61 (2020) no. 8 | DOI:10.1063/5.0004276
- On the decay of solutions of a damped quasilinear wave equation with variable‐exponent nonlinearities, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 8, p. 5114 | DOI:10.1002/mma.6254
- Coupled System of Nonlinear Hyperbolic Equations with Variable-Exponents: Global Existence and Stability, Mediterranean Journal of Mathematics, Volume 17 (2020) no. 5 | DOI:10.1007/s00009-020-01589-1
- Lower and upper bounds for lifespan of solutions to viscoelastic hyperbolic equations with variable sources and damping terms, Journal of Inequalities and Applications, Volume 2019 (2019) no. 1 | DOI:10.1186/s13660-019-2251-z
- On wave equation: review and recent results, Arabian Journal of Mathematics, Volume 7 (2018) no. 2, p. 113 | DOI:10.1007/s40065-017-0190-4
- Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities, Computers Mathematics with Applications, Volume 76 (2018) no. 8, p. 1863 | DOI:10.1016/j.camwa.2018.07.035
- Generalized Kelvin–Voigt equations with p-Laplacian and source/absorption terms, Journal of Mathematical Analysis and Applications, Volume 456 (2017) no. 1, p. 99 | DOI:10.1016/j.jmaa.2017.06.056
- Blowup in solutions of a quasilinear wave equation with variable‐exponent nonlinearities, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 18, p. 6976 | DOI:10.1002/mma.4505
- Global existence and blow-up of solutions for a Non-Newton polytropic filtration system with special volumetric moisture content, Computers Mathematics with Applications, Volume 71 (2016) no. 5, p. 1163 | DOI:10.1016/j.camwa.2016.01.029
- Singular phenomena of solutions for nonlinear diffusion equations involving p(x)-Laplace operator and nonlinear sources, Zeitschrift für angewandte Mathematik und Physik, Volume 66 (2015) no. 3, p. 989 | DOI:10.1007/s00033-014-0463-0
Cité par 44 documents. Sources : Crossref
☆ The project is supported by NSFC (11271154, 11301211), by Fundamental Research Funds of Jilin University (450060501317) and by the 985 program of Jilin University.
Commentaires - Politique