[Explosion de solutions d'équations hyperboliques quasi linéaires avec
Le but de cet article est d'étudier un problème aux limites initial et homogène défini par une équation hyperbolique quasi linéaire avec un
The aim of this paper is to study an initial and homogeneous boundary value problem to a quasilinear hyperbolic equation with a
Accepté le :
Publié le :
Mots-clés : Quasilinéaire hyperbolique, Explosion en temps fini, Énergie initiale positive
Bin Guo 1, 2 ; Wenjie Gao 1
@article{CRMECA_2014__342_9_513_0, author = {Bin Guo and Wenjie Gao}, title = {Blow-up of solutions to quasilinear hyperbolic equations with $ p(x,t)${-Laplacian} and positive initial energy}, journal = {Comptes Rendus. M\'ecanique}, pages = {513--519}, publisher = {Elsevier}, volume = {342}, number = {9}, year = {2014}, doi = {10.1016/j.crme.2014.06.001}, language = {en}, }
TY - JOUR AU - Bin Guo AU - Wenjie Gao TI - Blow-up of solutions to quasilinear hyperbolic equations with $ p(x,t)$-Laplacian and positive initial energy JO - Comptes Rendus. Mécanique PY - 2014 SP - 513 EP - 519 VL - 342 IS - 9 PB - Elsevier DO - 10.1016/j.crme.2014.06.001 LA - en ID - CRMECA_2014__342_9_513_0 ER -
Bin Guo; Wenjie Gao. Blow-up of solutions to quasilinear hyperbolic equations with $ p(x,t)$-Laplacian and positive initial energy. Comptes Rendus. Mécanique, Volume 342 (2014) no. 9, pp. 513-519. doi : 10.1016/j.crme.2014.06.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.06.001/
[1] Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal., Volume 164 (2002), pp. 213-259
[2] Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, Germany, 2011
[3] Electrorheological Fluids: Modelling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000
[4] Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differ. Equ., Volume 109 (1994), pp. 295-308
[5] Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions, Nonlinear Anal., Volume 93 (2013), pp. 62-77
[6] Wave equation with
[7] Singular phenomena of solutions for nonlinear diffusion equations involving
[8] Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., Volume 340 (2008), pp. 687-698
[9] Instability and nonexistence of global solutions to nonlinear wave equations of the form
- Blow-up of solutions to fractional quasilinear hyperbolic problem, Analysis and Mathematical Physics, Volume 15 (2025) no. 2 | DOI:10.1007/s13324-025-01033-1
- An Effect of Decay Rates for Petrovsky Equation: Supercritical Weak Damping, Journal of Dynamical and Control Systems, Volume 31 (2025) no. 2 | DOI:10.1007/s10883-025-09731-6
- On the well-posedness and stability of an (α,β)-Laplacian nonlinearly damped coupled system with source terms of strong nonlinearities, Journal of Mathematical Analysis and Applications, Volume 545 (2025) no. 1, p. 129089 | DOI:10.1016/j.jmaa.2024.129089
- On the interaction between the viscoelasticity and the boundary variable-exponent nonlinearity in plate systems, Applicable Analysis, Volume 103 (2024) no. 16, p. 2923 | DOI:10.1080/00036811.2024.2327436
- On a biharmonic coupled system with non-standard nonlinearity: Existence, blow up and numerics, Asymptotic Analysis, Volume 138 (2024) no. 1-2, p. 69 | DOI:10.3233/asy-231891
- Asymptotic stability of solutions to quasilinear damped wave equations with variable sources, Izvestiya: Mathematics, Volume 88 (2024) no. 4, p. 794 | DOI:10.4213/im9499e
- Existence and Blow-up Study of a Quasilinear Wave Equation with Damping and Source Terms of Variable Exponents-type Acting on the Boundary, Journal of Dynamical and Control Systems, Volume 30 (2024) no. 2 | DOI:10.1007/s10883-024-09695-z
- Viscoelastic Wave Equation with Variable-Exponent Nonlinear Boundary Feedback, Journal of Dynamical and Control Systems, Volume 30 (2024) no. 4 | DOI:10.1007/s10883-024-09714-z
- Different aspects of blow-up property for a nonlinear wave equation, Partial Differential Equations in Applied Mathematics, Volume 11 (2024), p. 100879 | DOI:10.1016/j.padiff.2024.100879
- Asymptotic stability of solutions to quasilinear damped wave equations with variable sources, Известия Российской академии наук. Серия математическая, Volume 88 (2024) no. 4, p. 204 | DOI:10.4213/im9499
- A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior, AIMS Mathematics, Volume 8 (2023) no. 4, p. 7933 | DOI:10.3934/math.2023400
- Exponential decay and blow-up results for a viscoelastic equation with variable sources, Applicable Analysis, Volume 102 (2023) no. 3, p. 782 | DOI:10.1080/00036811.2021.1965581
- Well-posedness and decay in a system of hyperbolic and biharmonic-wave equations with variable exponents and weak dampings, Arabian Journal of Mathematics, Volume 12 (2023) no. 3, p. 513 | DOI:10.1007/s40065-023-00431-2
- Optimal energy decay rates for viscoelastic wave equations with nonlinearity of variable exponent, Electronic Journal of Differential Equations, Volume 2023 (2023) no. 01-??, p. 53 | DOI:10.58997/ejde.2023.53
- Existence and decay of solutions to coupled systems of nonlinear wave equations with variable exponents, Electronic Journal of Differential Equations, Volume 2023 (2023) no. 01-??, p. 73 | DOI:10.58997/ejde.2023.73
- Delayed wave equation with logarithmic variable-exponent nonlinearity, Electronic Research Archive, Volume 31 (2023) no. 5, p. 2974 | DOI:10.3934/era.2023150
- Timoshenko beams with variable‐exponent nonlinearity, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 9, p. 10246 | DOI:10.1002/mma.9116
- Stability Results for a Weakly Dissipative Viscoelastic Equation with Variable-Exponent Nonlinearity: Theory and Numerics, Mathematical and Computational Applications, Volume 28 (2023) no. 1, p. 5 | DOI:10.3390/mca28010005
- Theoretical and numerical decay results of a viscoelastic suspension bridge with variable exponents nonlinearity, Mathematische Nachrichten, Volume 296 (2023) no. 12, p. 5426 | DOI:10.1002/mana.202200338
- Existence and blow up of solutions for a Petrovsky equation with variable-exponents, SeMA Journal, Volume 80 (2023) no. 3, p. 393 | DOI:10.1007/s40324-022-00302-4
- Decay result in a problem of a nonlinearly damped wave equation with variable exponent, AIMS Mathematics, Volume 7 (2022) no. 2, p. 3067 | DOI:10.3934/math.2022170
- Theoretical and numerical study of the blow up in a nonlinear viscoelastic problem with variable-exponent and arbitrary positive energy, Acta Mathematica Scientia, Volume 42 (2022) no. 1, p. 141 | DOI:10.1007/s10473-022-0107-y
- On the existence and stability of a nonlinear wave system with variable exponents, Asymptotic Analysis, Volume 128 (2022) no. 2, p. 211 | DOI:10.3233/asy-211704
- Blow up of negative initial-energy solutions of a system of nonlinear wave equations with variable-exponent nonlinearities, Discrete Continuous Dynamical Systems - S, Volume 15 (2022) no. 5, p. 1233 | DOI:10.3934/dcdss.2021107
- On the decay of solutions of a viscoelastic wave equation with variable sources, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 14, p. 8389 | DOI:10.1002/mma.7141
- Theoretical and computational results of a wave equation with variable exponent and time-dependent nonlinear damping, Arabian Journal of Mathematics, Volume 10 (2021) no. 2, p. 443 | DOI:10.1007/s40065-021-00312-6
- Existence and blow up in a system of wave equations with nonstandard nonlinearities, Electronic Journal of Differential Equations, Volume 2021 (2021) no. 01-104 | DOI:10.58997/ejde.2021.91
- Blow-Up of Solutions for a Class Quasilinear Wave Equation with Nonlinearity Variable Exponents, Journal of Function Spaces, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/5546630
- Stable and unstable sets for damped nonlinear wave equations with variable exponent sources, Journal of Mathematical Physics, Volume 62 (2021) no. 1 | DOI:10.1063/5.0012177
- Energy estimates to the Cauchy problem of a weakly damped Klein‐Gordon equation with variable‐exponent nonlinearity, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 11, p. 8999 | DOI:10.1002/mma.7327
- Long-Time Behavior of Solutions to Von Karman Equations with Variable Sources, Mediterranean Journal of Mathematics, Volume 18 (2021) no. 6 | DOI:10.1007/s00009-021-01904-4
- Existence and blow-up of solutions for von Karman equations with time delay and variable exponents, Applied Mathematics and Computation, Volume 371 (2020), p. 124917 | DOI:10.1016/j.amc.2019.124917
- Asymptotic stability of solutions to quasilinear hyperbolic equations with variable sources, Computers Mathematics with Applications, Volume 79 (2020) no. 4, p. 1012 | DOI:10.1016/j.camwa.2019.08.016
- A class of nonlinear parabolic equations with anisotropic nonstandard growth conditions, Journal of Mathematical Physics, Volume 61 (2020) no. 8 | DOI:10.1063/5.0004276
- On the decay of solutions of a damped quasilinear wave equation with variable‐exponent nonlinearities, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 8, p. 5114 | DOI:10.1002/mma.6254
- Coupled System of Nonlinear Hyperbolic Equations with Variable-Exponents: Global Existence and Stability, Mediterranean Journal of Mathematics, Volume 17 (2020) no. 5 | DOI:10.1007/s00009-020-01589-1
- Lower and upper bounds for lifespan of solutions to viscoelastic hyperbolic equations with variable sources and damping terms, Journal of Inequalities and Applications, Volume 2019 (2019) no. 1 | DOI:10.1186/s13660-019-2251-z
- On wave equation: review and recent results, Arabian Journal of Mathematics, Volume 7 (2018) no. 2, p. 113 | DOI:10.1007/s40065-017-0190-4
- Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities, Computers Mathematics with Applications, Volume 76 (2018) no. 8, p. 1863 | DOI:10.1016/j.camwa.2018.07.035
- Generalized Kelvin–Voigt equations with p-Laplacian and source/absorption terms, Journal of Mathematical Analysis and Applications, Volume 456 (2017) no. 1, p. 99 | DOI:10.1016/j.jmaa.2017.06.056
- Blowup in solutions of a quasilinear wave equation with variable‐exponent nonlinearities, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 18, p. 6976 | DOI:10.1002/mma.4505
- Global existence and blow-up of solutions for a Non-Newton polytropic filtration system with special volumetric moisture content, Computers Mathematics with Applications, Volume 71 (2016) no. 5, p. 1163 | DOI:10.1016/j.camwa.2016.01.029
- Singular phenomena of solutions for nonlinear diffusion equations involving p(x)-Laplace operator and nonlinear sources, Zeitschrift für angewandte Mathematik und Physik, Volume 66 (2015) no. 3, p. 989 | DOI:10.1007/s00033-014-0463-0
Cité par 43 documents. Sources : Crossref
☆ The project is supported by NSFC (11271154, 11301211), by Fundamental Research Funds of Jilin University (450060501317) and by the 985 program of Jilin University.
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier