[Explosion de solutions d'équations hyperboliques quasi linéaires avec
The aim of this paper is to study an initial and homogeneous boundary value problem to a quasilinear hyperbolic equation with a
Le but de cet article est d'étudier un problème aux limites initial et homogène défini par une équation hyperbolique quasi linéaire avec un
Accepté le :
Publié le :
Mots-clés : Quasilinéaire hyperbolique, Explosion en temps fini, Énergie initiale positive
Bin Guo 1, 2 ; Wenjie Gao 1
@article{CRMECA_2014__342_9_513_0, author = {Bin Guo and Wenjie Gao}, title = {Blow-up of solutions to quasilinear hyperbolic equations with $ p(x,t)${-Laplacian} and positive initial energy}, journal = {Comptes Rendus. M\'ecanique}, pages = {513--519}, publisher = {Elsevier}, volume = {342}, number = {9}, year = {2014}, doi = {10.1016/j.crme.2014.06.001}, language = {en}, }
TY - JOUR AU - Bin Guo AU - Wenjie Gao TI - Blow-up of solutions to quasilinear hyperbolic equations with $ p(x,t)$-Laplacian and positive initial energy JO - Comptes Rendus. Mécanique PY - 2014 SP - 513 EP - 519 VL - 342 IS - 9 PB - Elsevier DO - 10.1016/j.crme.2014.06.001 LA - en ID - CRMECA_2014__342_9_513_0 ER -
Bin Guo; Wenjie Gao. Blow-up of solutions to quasilinear hyperbolic equations with $ p(x,t)$-Laplacian and positive initial energy. Comptes Rendus. Mécanique, Volume 342 (2014) no. 9, pp. 513-519. doi : 10.1016/j.crme.2014.06.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.06.001/
[1] Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal., Volume 164 (2002), pp. 213-259
[2] Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, Germany, 2011
[3] Electrorheological Fluids: Modelling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000
[4] Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differ. Equ., Volume 109 (1994), pp. 295-308
[5] Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions, Nonlinear Anal., Volume 93 (2013), pp. 62-77
[6] Wave equation with
[7] Singular phenomena of solutions for nonlinear diffusion equations involving
[8] Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., Volume 340 (2008), pp. 687-698
[9] Instability and nonexistence of global solutions to nonlinear wave equations of the form
Cité par Sources :
☆ The project is supported by NSFC (11271154, 11301211), by Fundamental Research Funds of Jilin University (450060501317) and by the 985 program of Jilin University.
Commentaires - Politique