Comptes Rendus
Blow-up of solutions to quasilinear hyperbolic equations with p(x,t)-Laplacian and positive initial energy
[Explosion de solutions d'équations hyperboliques quasi linéaires avec p(x,t)-laplacien et énergie initiale positive]
Comptes Rendus. Mécanique, Volume 342 (2014) no. 9, pp. 513-519.

Le but de cet article est d'étudier un problème aux limites initial et homogène défini par une équation hyperbolique quasi linéaire avec un p(x,t)-Laplacien et une énergie initiale positive. Les auteurs montrent que la solution explose dans un temps fini sous certaines conditions sur la valeur initiale, les exposants et les coefficients de l'équation. Les résultats généralisent et améliorent celui de S.N. Antonsev (2011) [6]. En outre, les conditions de positivité de l'intégrale pour les données initiales et le caractère borné de pt(x,t) sont supprimées.

The aim of this paper is to study an initial and homogeneous boundary value problem to a quasilinear hyperbolic equation with a p(x,t)-Laplacian and a positive initial energy. The authors prove that the solution blows up in a finite time under some conditions on the initial value, the exponents and the coefficients in the equation. The results generalize and improve that of S.N. Antonsev (2011) [6]. Besides, the conditions of positivity of the integral to the initial data and the boundedness of pt(x,t) are removed.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2014.06.001
Keywords: Quasilinear hyperbolic, Blow-up in finite time, Positive initial energy
Mots-clés : Quasilinéaire hyperbolique, Explosion en temps fini, Énergie initiale positive

Bin Guo 1, 2 ; Wenjie Gao 1

1 School of Mathematics, Jilin University, Changchun 130012, China
2 Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
@article{CRMECA_2014__342_9_513_0,
     author = {Bin Guo and Wenjie Gao},
     title = {Blow-up of solutions to quasilinear hyperbolic equations with $ p(x,t)${-Laplacian} and positive initial energy},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {513--519},
     publisher = {Elsevier},
     volume = {342},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crme.2014.06.001},
     language = {en},
}
TY  - JOUR
AU  - Bin Guo
AU  - Wenjie Gao
TI  - Blow-up of solutions to quasilinear hyperbolic equations with $ p(x,t)$-Laplacian and positive initial energy
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 513
EP  - 519
VL  - 342
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2014.06.001
LA  - en
ID  - CRMECA_2014__342_9_513_0
ER  - 
%0 Journal Article
%A Bin Guo
%A Wenjie Gao
%T Blow-up of solutions to quasilinear hyperbolic equations with $ p(x,t)$-Laplacian and positive initial energy
%J Comptes Rendus. Mécanique
%D 2014
%P 513-519
%V 342
%N 9
%I Elsevier
%R 10.1016/j.crme.2014.06.001
%G en
%F CRMECA_2014__342_9_513_0
Bin Guo; Wenjie Gao. Blow-up of solutions to quasilinear hyperbolic equations with $ p(x,t)$-Laplacian and positive initial energy. Comptes Rendus. Mécanique, Volume 342 (2014) no. 9, pp. 513-519. doi : 10.1016/j.crme.2014.06.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.06.001/

[1] E. Acerbi; G. Mingione Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal., Volume 164 (2002), pp. 213-259

[2] L. Diening; P. Harjulehto; P. Hästö; M. Rûžička Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, Germany, 2011

[3] M. Ruzicka Electrorheological Fluids: Modelling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000

[4] V. Georgiev; G. Todorova Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differ. Equ., Volume 109 (1994), pp. 295-308

[5] S.N. Antonsev; J. Ferreira Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions, Nonlinear Anal., Volume 93 (2013), pp. 62-77

[6] S.N. Antontsev Wave equation with p(x,t)-Laplacian and damping: blow-up of solutions, C. R. Mecanique, Volume 339 (2011), pp. 751-755

[7] B. Guo; W.J. Gao Singular phenomena of solutions for nonlinear diffusion equations involving p(x)-Laplacian operator | arXiv

[8] M. Mihǎilescu; P. Pucci; V. Rǎdulescu Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., Volume 340 (2008), pp. 687-698

[9] H.A. Levine Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt=Au+F(u), Trans. Amer. Math. Soc., Volume 192 (1974), pp. 1-21

  • J. Vanterler da C. Sousa; D. S. Oliveira Blow-up of solutions to fractional quasilinear hyperbolic problem, Analysis and Mathematical Physics, Volume 15 (2025) no. 2 | DOI:10.1007/s13324-025-01033-1
  • Guoqiang Qin; Menglan Liao; Jingjing Zhang An Effect of Decay Rates for Petrovsky Equation: Supercritical Weak Damping, Journal of Dynamical and Control Systems, Volume 31 (2025) no. 2 | DOI:10.1007/s10883-025-09731-6
  • Oulia Bouhoufani; Salim Messaoudi On the well-posedness and stability of an (α,β)-Laplacian nonlinearly damped coupled system with source terms of strong nonlinearities, Journal of Mathematical Analysis and Applications, Volume 545 (2025) no. 1, p. 129089 | DOI:10.1016/j.jmaa.2024.129089
  • Muhammad I. Mustafa On the interaction between the viscoelasticity and the boundary variable-exponent nonlinearity in plate systems, Applicable Analysis, Volume 103 (2024) no. 16, p. 2923 | DOI:10.1080/00036811.2024.2327436
  • Oulia Bouhoufani; Salim A. Messaoudi; Mohamed Alahyane On a biharmonic coupled system with non-standard nonlinearity: Existence, blow up and numerics, Asymptotic Analysis, Volume 138 (2024) no. 1-2, p. 69 | DOI:10.3233/asy-231891
  • Xiaoxin Yang; Xiulan Wu; Jiabao Zhuang Asymptotic stability of solutions to quasilinear damped wave equations with variable sources, Izvestiya: Mathematics, Volume 88 (2024) no. 4, p. 794 | DOI:10.4213/im9499e
  • Mohammad Kafini; Mohammad M. Al-Gharabli; Adel M. Al-Mahdi Existence and Blow-up Study of a Quasilinear Wave Equation with Damping and Source Terms of Variable Exponents-type Acting on the Boundary, Journal of Dynamical and Control Systems, Volume 30 (2024) no. 2 | DOI:10.1007/s10883-024-09695-z
  • Muhammad I. Mustafa Viscoelastic Wave Equation with Variable-Exponent Nonlinear Boundary Feedback, Journal of Dynamical and Control Systems, Volume 30 (2024) no. 4 | DOI:10.1007/s10883-024-09714-z
  • Mohammad Kafini Different aspects of blow-up property for a nonlinear wave equation, Partial Differential Equations in Applied Mathematics, Volume 11 (2024), p. 100879 | DOI:10.1016/j.padiff.2024.100879
  • Xiaoxin Yang; Xiulan Wu; Jiabao Zhuang Asymptotic stability of solutions to quasilinear damped wave equations with variable sources, Известия Российской академии наук. Серия математическая, Volume 88 (2024) no. 4, p. 204 | DOI:10.4213/im9499
  • Salim A. Messaoudi; Mohammad M. Al-Gharabli; Adel M. Al-Mahdi; Mohammed A. Al-Osta A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior, AIMS Mathematics, Volume 8 (2023) no. 4, p. 7933 | DOI:10.3934/math.2023400
  • Nhan Cong Le; Truong Xuan Le; Y. Van Nguyen Exponential decay and blow-up results for a viscoelastic equation with variable sources, Applicable Analysis, Volume 102 (2023) no. 3, p. 782 | DOI:10.1080/00036811.2021.1965581
  • Oulia Bouhoufani Well-posedness and decay in a system of hyperbolic and biharmonic-wave equations with variable exponents and weak dampings, Arabian Journal of Mathematics, Volume 12 (2023) no. 3, p. 513 | DOI:10.1007/s40065-023-00431-2
  • Muhammad I. Mustafa Optimal energy decay rates for viscoelastic wave equations with nonlinearity of variable exponent, Electronic Journal of Differential Equations, Volume 2023 (2023) no. 01-??, p. 53 | DOI:10.58997/ejde.2023.53
  • Oulia Bouhoufani; Salim A. Messaoudi; Mostafa Zahri Existence and decay of solutions to coupled systems of nonlinear wave equations with variable exponents, Electronic Journal of Differential Equations, Volume 2023 (2023) no. 01-??, p. 73 | DOI:10.58997/ejde.2023.73
  • Mohammad Kafini; Maher Noor Delayed wave equation with logarithmic variable-exponent nonlinearity, Electronic Research Archive, Volume 31 (2023) no. 5, p. 2974 | DOI:10.3934/era.2023150
  • Muhammad I. Mustafa Timoshenko beams with variable‐exponent nonlinearity, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 9, p. 10246 | DOI:10.1002/mma.9116
  • Adel M. Al-Mahdi; Mohammad M. Al-Gharabli; Maher Noor; Johnson D. Audu Stability Results for a Weakly Dissipative Viscoelastic Equation with Variable-Exponent Nonlinearity: Theory and Numerics, Mathematical and Computational Applications, Volume 28 (2023) no. 1, p. 5 | DOI:10.3390/mca28010005
  • Adel M. Al‐Mahdi; Mohammad M. Al‐Gharabli; Mostafa Zahri Theoretical and numerical decay results of a viscoelastic suspension bridge with variable exponents nonlinearity, Mathematische Nachrichten, Volume 296 (2023) no. 12, p. 5426 | DOI:10.1002/mana.202200338
  • Taklit Hamadouche Existence and blow up of solutions for a Petrovsky equation with variable-exponents, SeMA Journal, Volume 80 (2023) no. 3, p. 393 | DOI:10.1007/s40324-022-00302-4
  • Mohammad Kafini; Jamilu Hashim Hassan; Mohammad M. Al-Gharabli Decay result in a problem of a nonlinearly damped wave equation with variable exponent, AIMS Mathematics, Volume 7 (2022) no. 2, p. 3067 | DOI:10.3934/math.2022170
  • Ala A. Talahmeh; Salim A. Messaoudi; Mohamed Alahyane Theoretical and numerical study of the blow up in a nonlinear viscoelastic problem with variable-exponent and arbitrary positive energy, Acta Mathematica Scientia, Volume 42 (2022) no. 1, p. 141 | DOI:10.1007/s10473-022-0107-y
  • Salim A. Messaoudi; Ala A. Talahmeh; Mohammad M. Al-Gharabli; Mohamed Alahyane On the existence and stability of a nonlinear wave system with variable exponents, Asymptotic Analysis, Volume 128 (2022) no. 2, p. 211 | DOI:10.3233/asy-211704
  • Salim A. Messaoudi; Ala A. Talahmeh Blow up of negative initial-energy solutions of a system of nonlinear wave equations with variable-exponent nonlinearities, Discrete Continuous Dynamical Systems - S, Volume 15 (2022) no. 5, p. 1233 | DOI:10.3934/dcdss.2021107
  • Salim A. Messaoudi; Mohammad M. Al‐Gharabli; Adel M. Al‐Mahdi On the decay of solutions of a viscoelastic wave equation with variable sources, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 14, p. 8389 | DOI:10.1002/mma.7141
  • Muhammad I. Mustafa; Salim A. Messaoudi; Mostafa Zahri Theoretical and computational results of a wave equation with variable exponent and time-dependent nonlinear damping, Arabian Journal of Mathematics, Volume 10 (2021) no. 2, p. 443 | DOI:10.1007/s40065-021-00312-6
  • Salim A. Messaoudi; Oulia Bouhoufani; Ilhem Hamchi; Mohamed Alahyane Existence and blow up in a system of wave equations with nonstandard nonlinearities, Electronic Journal of Differential Equations, Volume 2021 (2021) no. 01-104 | DOI:10.58997/ejde.2021.91
  • Zakia Tebba; Hakima Degaichia; Mohamed Abdalla; Bahri Belkacem Cherif; Ibrahim Mekawy; Nawab Hussain Blow-Up of Solutions for a Class Quasilinear Wave Equation with Nonlinearity Variable Exponents, Journal of Function Spaces, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/5546630
  • Le Cong Nhan; Le Xuan Truong Stable and unstable sets for damped nonlinear wave equations with variable exponent sources, Journal of Mathematical Physics, Volume 62 (2021) no. 1 | DOI:10.1063/5.0012177
  • Muhammad I. Mustafa Energy estimates to the Cauchy problem of a weakly damped Klein‐Gordon equation with variable‐exponent nonlinearity, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 11, p. 8999 | DOI:10.1002/mma.7327
  • Fang Li; Xiaolei Li Long-Time Behavior of Solutions to Von Karman Equations with Variable Sources, Mediterranean Journal of Mathematics, Volume 18 (2021) no. 6 | DOI:10.1007/s00009-021-01904-4
  • Jum-Ran Kang Existence and blow-up of solutions for von Karman equations with time delay and variable exponents, Applied Mathematics and Computation, Volume 371 (2020), p. 124917 | DOI:10.1016/j.amc.2019.124917
  • Xiaolei Li; Bin Guo; Menglan Liao Asymptotic stability of solutions to quasilinear hyperbolic equations with variable sources, Computers Mathematics with Applications, Volume 79 (2020) no. 4, p. 1012 | DOI:10.1016/j.camwa.2019.08.016
  • Menglan Liao A class of nonlinear parabolic equations with anisotropic nonstandard growth conditions, Journal of Mathematical Physics, Volume 61 (2020) no. 8 | DOI:10.1063/5.0004276
  • Salim A. Messaoudi On the decay of solutions of a damped quasilinear wave equation with variable‐exponent nonlinearities, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 8, p. 5114 | DOI:10.1002/mma.6254
  • Oulia Bouhoufani; Ilhem Hamchi Coupled System of Nonlinear Hyperbolic Equations with Variable-Exponents: Global Existence and Stability, Mediterranean Journal of Mathematics, Volume 17 (2020) no. 5 | DOI:10.1007/s00009-020-01589-1
  • Lili Dai; Zhuo Zhang Lower and upper bounds for lifespan of solutions to viscoelastic hyperbolic equations with variable sources and damping terms, Journal of Inequalities and Applications, Volume 2019 (2019) no. 1 | DOI:10.1186/s13660-019-2251-z
  • Salim A. Messaoudi; Ala A. Talahmeh On wave equation: review and recent results, Arabian Journal of Mathematics, Volume 7 (2018) no. 2, p. 113 | DOI:10.1007/s40065-017-0190-4
  • Salim A. Messaoudi; Jamal H. Al-Smail; Ala A. Talahmeh Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities, Computers Mathematics with Applications, Volume 76 (2018) no. 8, p. 1863 | DOI:10.1016/j.camwa.2018.07.035
  • S.N. Antontsev; Kh. Khompysh Generalized Kelvin–Voigt equations with p-Laplacian and source/absorption terms, Journal of Mathematical Analysis and Applications, Volume 456 (2017) no. 1, p. 99 | DOI:10.1016/j.jmaa.2017.06.056
  • Salim A. Messaoudi; Ala A. Talahmeh Blowup in solutions of a quasilinear wave equation with variable‐exponent nonlinearities, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 18, p. 6976 | DOI:10.1002/mma.4505
  • Jun Zhou Global existence and blow-up of solutions for a Non-Newton polytropic filtration system with special volumetric moisture content, Computers Mathematics with Applications, Volume 71 (2016) no. 5, p. 1163 | DOI:10.1016/j.camwa.2016.01.029
  • Bin Guo; Yajuan Li; Wenjie Gao Singular phenomena of solutions for nonlinear diffusion equations involving p(x)-Laplace operator and nonlinear sources, Zeitschrift für angewandte Mathematik und Physik, Volume 66 (2015) no. 3, p. 989 | DOI:10.1007/s00033-014-0463-0

Cité par 43 documents. Sources : Crossref

The project is supported by NSFC (11271154, 11301211), by Fundamental Research Funds of Jilin University (450060501317) and by the 985 program of Jilin University.

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: