Comptes Rendus
Theoretical and numerical approaches for Vlasov–Maxwell equations
WENO schemes applied to the quasi-relativistic Vlasov–Maxwell model for laser–plasma interaction
Comptes Rendus. Mécanique, Volume 342 (2014) no. 10-11, pp. 583-594.

In this paper we focus on WENO-based methods for the simulation of the 1D Quasi-Relativistic Vlasov–Maxwell (QRVM) model used to describe how a laser wave interacts with and heats a plasma by penetrating into it. We propose several non-oscillatory methods based on either Runge–Kutta (explicit) or Time-Splitting (implicit) time discretizations. We then show preliminary numerical experiments.

Dans cet article, nous nous intéressons aux méthodes de type WENO pour la simulation du modèle Vlasov–Maxwell quasi-relativiste (QRVM) 1D, utilisé pour décrire la façon dont une onde laser interagit avec un plasma et le réchauffe en le pénétrant. Nous proposons plusieurs méthodes non oscillatoires fondées sur des discrétisations en temps, soit Runge–Kutta (explicites) soit Time-Splitting (implicites). Ensuite, nous présentons des expériences numériques préliminaires.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2014.06.009
Keywords: Vlasov–Maxwell, WENO, Laser–plasma interaction, Runge–Kutta schemes, Strang splitting
Mot clés : Vlasov–Maxwell, WENO, Interaction laser–plasma, Schémas de Runge–Kutta, Splitting de Strang

Francesco Vecil 1; Pep Mulet Mestre 2; Simon Labrunie 3, 4

1 Laboratoire de mathématiques, Université Blaise-Pascal (Clermont-Ferrand 2), UMR 6620, CNRS, campus des Cézeaux, BP 80026, 63171 Aubière, France
2 Universitat de València, Departament de Matemàtica Aplicada, calle del Doctor Moliner 50, Burjassot 46100, Spain
3 Université de Lorraine, Institut Élie Cartan de Lorraine, UMR 7502, 54506 Vandœuvre-lès-Nancy, France
4 CNRS, Institut Élie Cartan de Lorraine, UMR 7502, 54506 Vandœuvre-lès-Nancy, France
@article{CRMECA_2014__342_10-11_583_0,
     author = {Francesco Vecil and Pep Mulet Mestre and Simon Labrunie},
     title = {WENO schemes applied to the quasi-relativistic {Vlasov{\textendash}Maxwell} model for laser{\textendash}plasma interaction},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {583--594},
     publisher = {Elsevier},
     volume = {342},
     number = {10-11},
     year = {2014},
     doi = {10.1016/j.crme.2014.06.009},
     language = {en},
}
TY  - JOUR
AU  - Francesco Vecil
AU  - Pep Mulet Mestre
AU  - Simon Labrunie
TI  - WENO schemes applied to the quasi-relativistic Vlasov–Maxwell model for laser–plasma interaction
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 583
EP  - 594
VL  - 342
IS  - 10-11
PB  - Elsevier
DO  - 10.1016/j.crme.2014.06.009
LA  - en
ID  - CRMECA_2014__342_10-11_583_0
ER  - 
%0 Journal Article
%A Francesco Vecil
%A Pep Mulet Mestre
%A Simon Labrunie
%T WENO schemes applied to the quasi-relativistic Vlasov–Maxwell model for laser–plasma interaction
%J Comptes Rendus. Mécanique
%D 2014
%P 583-594
%V 342
%N 10-11
%I Elsevier
%R 10.1016/j.crme.2014.06.009
%G en
%F CRMECA_2014__342_10-11_583_0
Francesco Vecil; Pep Mulet Mestre; Simon Labrunie. WENO schemes applied to the quasi-relativistic Vlasov–Maxwell model for laser–plasma interaction. Comptes Rendus. Mécanique, Volume 342 (2014) no. 10-11, pp. 583-594. doi : 10.1016/j.crme.2014.06.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.06.009/

[1] A. Ghizzo; P. Bertrand; M. Shoucri; T.W. Johnston; E. Fijalkow; M.R. Feix A Vlasov code for the numerical simulation of stimulated Raman scattering, J. Comput. Phys., Volume 90 (1990) no. 2, pp. 431-457

[2] F. Huot; A. Ghizzo; P. Bertrand; E. Sonnendrücker; O. Coulaud Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov–Maxwell system, J. Comput. Phys., Volume 185 (2003) no. 2, pp. 512-531

[3] J.A. Carrillo; S. Labrunie Global solutions for the one-dimensional Vlasov–Maxwell system for laser–plasma interaction, Math. Models Methods Appl. Sci., Volume 16 (2006) no. 1, pp. 19-57

[4] M. Bostan; N. Crouseilles Convergence of a semi-Lagrangian scheme for the reduced Vlasov–Maxwell system for laser–plasma interaction, Numer. Math., Volume 112 (2009), pp. 169-195

[5] N. Besse; G. Latu; A. Ghizzo; E. Sonnendrücker; P. Bertrand A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov–Maxwell system, J. Comput. Phys., Volume 227 (2008) no. 16, pp. 7889-7916

[6] M. Cáceres; J. Carrillo; I. Gamba; A. Majorana; C.-W. Shu Deterministic kinetic solvers for charged particle transport in semiconductor devices (C. Cercignani; E. Gabetta, eds.), Transport Phenomena and Kinetic Theory: Applications to Gases, Semiconductors, Photons and Biological Systems, Series: Modelling and Simulation in Science, Engineering and Technology, Birkhäuser, Basel, Switzerland, 2007

[7] G. Strang On the construction and comparison of difference schemes, SIAM J. Numer. Anal., Volume 5 (1968), pp. 506-517

[8] J.A. Carrillo; F. Vecil Nonoscillatory interpolation methods applied to Vlasov-based models, SIAM J. Sci. Comput., Volume 29 (2007) no. 3, pp. 1179-1206 (electronic)

[9] F. Aràndiga; A. Baeza; A.M. Belda; P. Mulet Analysis of WENO schemes for full and global accuracy, SIAM J. Numer. Anal., Volume 49 (2011) no. 2, pp. 893-915

[10] F. Aràndiga; A.M. Belda; P. Mulet Point-value WENO multiresolution applications to stable image compression, J. Sci. Comput., Volume 43 (2010) no. 2, pp. 158-182

[11] F. Filbet; E. Sonnendrücker; P. Bertrand Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., Volume 172 (2001) no. 1, pp. 166-187

[12] P. Mulet; F. Vecil A semi-Lagrangian AMR scheme for 2D transport problems in conservation form, J. Comput. Phys., Volume 237 (2013), pp. 151-176

[13] J. Carrillo; I. Gamba; A. Majorana; C.-W. Shu A WENO-solver for the transients of Boltzmann–Poisson system for semiconductor devices. Performance and comparisons with Monte Carlo methods, J. Comput. Phys., Volume 184 (2003), pp. 498-525

[14] J. Carrillo; I. Gamba; A. Majorana; C.-W. Shu 2D semiconductor device simulations by WENO-Boltzmann schemes: efficiency, boundary conditions and comparison to Monte Carlo methods, J. Comput. Phys., Volume 214 (2006), pp. 55-80

[15] C. Cheng; G. Knorr The integration of the Vlasov equation in configuration space, J. Comput. Phys., Volume 22 (1976), pp. 330-351

[16] Z. Jackiewicz; A. Marthinsen; B. Owren Construction of Runge–Kutta methods of Crouch–Grossman type of high order, Adv. Comput. Math., Volume 13 (2000) no. 4, pp. 405-415

[17] A. Marthinsen; B. Owren A note on the construction of Crouch–Grossman methods, BIT Numer. Math., Volume 41 (2001) no. 1, pp. 207-214

[18] G.-S. Jiang; C.-W. Shu Efficient implementation of weighted ENO schemes, J. Comput. Phys., Volume 126 (1996) no. 1, pp. 202-228

[19] J.M. Mantas; M.J. Cáceres Efficient deterministic parallel simulation of 2D semiconductor devices based on WENO-Boltzmann schemes, Comput. Methods Appl. Mech. Eng., Volume 198 (2009) no. 5–8, pp. 693-704

[20] A. Baeza; A. Martínez-Gavara; P. Mulet Adaptation based on interpolation errors for high order mesh refinement methods applied to conservation laws, WONAPDE 2010 (Appl. Numer. Math.), Volume vol. 62 (2012), pp. 278-296

[21] A. Baeza; P. Mulet Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations, Int. J. Numer. Methods Fluids, Volume 52 (2006), pp. 455-471

Cited by Sources:

Comments - Policy