We change a previous time-stepping algorithm for solving a multi-scale Vlasov–Poisson system within a Particle-In-Cell method, in order to perform accurate long-time simulations. As an exponential integrator, the new scheme allows us to use large time steps compared to the size of the oscillations in the solution.
Accepted:
Published online:
Emmanuel Frénod 1, 2; Sever A. Hirstoaga 2, 3; Mathieu Lutz 2, 3
@article{CRMECA_2014__342_10-11_595_0, author = {Emmanuel Fr\'enod and Sever A. Hirstoaga and Mathieu Lutz}, title = {Long-time simulation of a highly oscillatory {Vlasov} equation with an exponential integrator}, journal = {Comptes Rendus. M\'ecanique}, pages = {595--609}, publisher = {Elsevier}, volume = {342}, number = {10-11}, year = {2014}, doi = {10.1016/j.crme.2014.06.006}, language = {en}, }
TY - JOUR AU - Emmanuel Frénod AU - Sever A. Hirstoaga AU - Mathieu Lutz TI - Long-time simulation of a highly oscillatory Vlasov equation with an exponential integrator JO - Comptes Rendus. Mécanique PY - 2014 SP - 595 EP - 609 VL - 342 IS - 10-11 PB - Elsevier DO - 10.1016/j.crme.2014.06.006 LA - en ID - CRMECA_2014__342_10-11_595_0 ER -
%0 Journal Article %A Emmanuel Frénod %A Sever A. Hirstoaga %A Mathieu Lutz %T Long-time simulation of a highly oscillatory Vlasov equation with an exponential integrator %J Comptes Rendus. Mécanique %D 2014 %P 595-609 %V 342 %N 10-11 %I Elsevier %R 10.1016/j.crme.2014.06.006 %G en %F CRMECA_2014__342_10-11_595_0
Emmanuel Frénod; Sever A. Hirstoaga; Mathieu Lutz. Long-time simulation of a highly oscillatory Vlasov equation with an exponential integrator. Comptes Rendus. Mécanique, Theoretical and numerical approaches for Vlasov-maxwell equations, Volume 342 (2014) no. 10-11, pp. 595-609. doi : 10.1016/j.crme.2014.06.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.06.006/
[1] An exponential integrator for a highly oscillatory Vlasov equation, Discrete Contin. Dyn. Syst. Ser. S, Volume 8 (2015) no. 1, pp. 169-183
[2] Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method, Math. Models Methods Appl. Sci., Volume 19 (2009) no. 2, pp. 175-197
[3] Plasma Physics via Computer Simulation, Institute of Physics, Bristol and Philadelphia, 1991
[4] Application of Lie Transform Techniques for simulation of a charged particle beam, Discrete Contin. Dyn. Syst. Ser. S, Volume 8 (2015) no. 1, pp. 185-221
[5] Exponential time differencing for stiff systems, J. Comput. Phys., Volume 176 (2002), pp. 430-455
[6] Exponential integrators, Acta Numer., Volume 19 (2010), pp. 209-286
[7] Ordinary Differential Equations, John Wiley, New York, 1969
Cited by Sources:
Comments - Policy