Comptes Rendus
Theoretical and numerical approaches for Vlasov–Maxwell equations
Charge-conserving grid based methods for the Vlasov–Maxwell equations
Comptes Rendus. Mécanique, Theoretical and numerical approaches for Vlasov-maxwell equations, Volume 342 (2014) no. 10-11, pp. 636-646.

In this article, we introduce numerical schemes for the Vlasov–Maxwell equations relying on different kinds of grid-based Vlasov solvers, as opposite to PIC schemes, which enforce a discrete continuity equation. The idea underlying these schemes relies on a time-splitting scheme between configuration space and velocity space for the Vlasov equation and on the computation of the discrete current in a form that is compatible with the discrete Maxwell solver.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2014.06.012
Keywords: Maxwell–Vlasov system, Discrete continuity equation, Finite volume method, Spectral method, Semi-Lagrangian method

Nicolas Crouseilles 1 ; Pierre Navaro 2 ; Éric Sonnendrücker 3, 4

1 Inria Rennes Bretagne Atlantique, IPSO Project, France
2 IRMA – CNRS & Université de Strasbourg, France
3 Max-Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany
4 Mathematics Center, TU Munich, Boltzmannstr. 3, 85747 Garching, Germany
@article{CRMECA_2014__342_10-11_636_0,
     author = {Nicolas Crouseilles and Pierre Navaro and \'Eric Sonnendr\"ucker},
     title = {Charge-conserving grid based methods for the {Vlasov{\textendash}Maxwell} equations},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {636--646},
     publisher = {Elsevier},
     volume = {342},
     number = {10-11},
     year = {2014},
     doi = {10.1016/j.crme.2014.06.012},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Crouseilles
AU  - Pierre Navaro
AU  - Éric Sonnendrücker
TI  - Charge-conserving grid based methods for the Vlasov–Maxwell equations
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 636
EP  - 646
VL  - 342
IS  - 10-11
PB  - Elsevier
DO  - 10.1016/j.crme.2014.06.012
LA  - en
ID  - CRMECA_2014__342_10-11_636_0
ER  - 
%0 Journal Article
%A Nicolas Crouseilles
%A Pierre Navaro
%A Éric Sonnendrücker
%T Charge-conserving grid based methods for the Vlasov–Maxwell equations
%J Comptes Rendus. Mécanique
%D 2014
%P 636-646
%V 342
%N 10-11
%I Elsevier
%R 10.1016/j.crme.2014.06.012
%G en
%F CRMECA_2014__342_10-11_636_0
Nicolas Crouseilles; Pierre Navaro; Éric Sonnendrücker. Charge-conserving grid based methods for the Vlasov–Maxwell equations. Comptes Rendus. Mécanique, Theoretical and numerical approaches for Vlasov-maxwell equations, Volume 342 (2014) no. 10-11, pp. 636-646. doi : 10.1016/j.crme.2014.06.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.06.012/

[1] C.-D. Munz; R. Schneider; E. Sonnendrücker; U. Voss Maxwell's equations when the charge conservation is not satisfied, C. R. Acad. Sci. Paris, Ser. I, Volume 328 (1999) no. 5, pp. 431-436

[2] F. Bouchut On the discrete conservation of the Gauss–Poisson equation of plasma physics, Commun. Numer. Methods Eng., Volume 14 (1998) no. 1, pp. 23-34

[3] J. Villasenor; O. Buneman Rigorous charge conservation for local electromagnetic field solvers, Comput. Phys. Commun., Volume 69 (1992), pp. 306-316

[4] R. Barthelmé; C. Parzani Numerical charge conservation in particle-in-cell codes, Numerical Methods for Hyperbolic and Kinetic Problems, IRMA Lect. Math. Theor. Phys., vol. 7, 2005, pp. 7-28

[5] Esirkepov; T. Zh Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor, Comput. Phys. Commun., Volume 135 (2001), pp. 144-153

[6] T. Umeda; Y. Omura; T. Tominaga; H. Matsumoto A new charge conservation method in electromagnetic particle-in-cell simulations, Comput. Phys. Commun., Volume 156 (2004), pp. 73-85

[7] N.J. Sircombe; T.D. Arber VALIS: a split-conservative scheme for the relativistic 2D Vlasov–Maxwell system, J. Comput. Phys., Volume 228 (2009), pp. 4773-4788

[8] P. Colella; P.R. Woodward The Piecewise Parabolic Method (PPM) for gas-dynamical simulations, J. Comput. Phys., Volume 54 (1984), pp. 174-201

[9] N. Crouseilles; M. Mehrenberger; E. Sonnendrücker Conservative semi-Lagrangian schemes for the Vlasov equation, J. Comput. Phys. (2009)

  • Benjamin Boutin; Anaïs Crestetto; Nicolas Crouseilles; Josselin Massot Modified Lawson Methods for Vlasov Equations, SIAM Journal on Scientific Computing, Volume 46 (2024) no. 3, p. A1574 | DOI:10.1137/22m154301x
  • F. Assous; Y. Furman Numerical approximation of 3D particle beams by multi-scale paraxial Vlasov-Maxwell equations, Journal of Computational Physics, Volume 488 (2023), p. 112186 | DOI:10.1016/j.jcp.2023.112186
  • Hongtao Liu; Xiaofeng Cai; Giovanni Lapenta; Yong Cao Conservative semi-Lagrangian kinetic scheme coupled with implicit finite element field solver for multidimensional Vlasov Maxwell system, Communications in Nonlinear Science and Numerical Simulation, Volume 102 (2021), p. 105941 | DOI:10.1016/j.cnsns.2021.105941
  • C.-D. Munz; E. Sonnendrücker Maxwell and Magnetohydrodynamic Equations, Handbook of Numerical Methods for Hyperbolic Problems - Applied and Modern Issues, Volume 18 (2017), p. 385 | DOI:10.1016/bs.hna.2016.10.006
  • Michael Kraus; Katharina Kormann; Philip J. Morrison; Eric Sonnendrücker GEMPIC: geometric electromagnetic particle-in-cell methods, Journal of Plasma Physics, Volume 83 (2017) no. 4 | DOI:10.1017/s002237781700040x
  • Mathieu Sarrat; Alain Ghizzo; Daniele Del Sarto; Laurent Serrat Parallel implementation of a relativistic semi-Lagrangian Vlasov–Maxwell solver, The European Physical Journal D, Volume 71 (2017) no. 11 | DOI:10.1140/epjd/e2017-80188-4
  • Martin Campos Pinto; Marie Mounier; Eric Sonnendrücker Handling the divergence constraints in Maxwell and Vlasov–Maxwell simulations, Applied Mathematics and Computation, Volume 272 (2016), p. 403 | DOI:10.1016/j.amc.2015.07.089
  • Nicolas Crouseilles; Lukas Einkemmer; Erwan Faou An asymptotic preserving scheme for the relativistic Vlasov–Maxwell equations in the classical limit, Computer Physics Communications, Volume 209 (2016), p. 13 | DOI:10.1016/j.cpc.2016.08.001
  • Nicolas Crouseilles; Lukas Einkemmer; Erwan Faou Hamiltonian splitting for the Vlasov–Maxwell equations, Journal of Computational Physics, Volume 283 (2015), p. 224 | DOI:10.1016/j.jcp.2014.11.029
  • M. Pfeiffer; C.-D. Munz; S. Fasoulas Hyperbolic divergence cleaning, the electrostatic limit, and potential boundary conditions for particle-in-cell codes, Journal of Computational Physics, Volume 294 (2015), p. 547 | DOI:10.1016/j.jcp.2015.04.001

Cité par 10 documents. Sources : Crossref

Commentaires - Politique