In this article, we introduce numerical schemes for the Vlasov–Maxwell equations relying on different kinds of grid-based Vlasov solvers, as opposite to PIC schemes, which enforce a discrete continuity equation. The idea underlying these schemes relies on a time-splitting scheme between configuration space and velocity space for the Vlasov equation and on the computation of the discrete current in a form that is compatible with the discrete Maxwell solver.
Accepté le :
Publié le :
Nicolas Crouseilles 1 ; Pierre Navaro 2 ; Éric Sonnendrücker 3, 4
@article{CRMECA_2014__342_10-11_636_0, author = {Nicolas Crouseilles and Pierre Navaro and \'Eric Sonnendr\"ucker}, title = {Charge-conserving grid based methods for the {Vlasov{\textendash}Maxwell} equations}, journal = {Comptes Rendus. M\'ecanique}, pages = {636--646}, publisher = {Elsevier}, volume = {342}, number = {10-11}, year = {2014}, doi = {10.1016/j.crme.2014.06.012}, language = {en}, }
TY - JOUR AU - Nicolas Crouseilles AU - Pierre Navaro AU - Éric Sonnendrücker TI - Charge-conserving grid based methods for the Vlasov–Maxwell equations JO - Comptes Rendus. Mécanique PY - 2014 SP - 636 EP - 646 VL - 342 IS - 10-11 PB - Elsevier DO - 10.1016/j.crme.2014.06.012 LA - en ID - CRMECA_2014__342_10-11_636_0 ER -
Nicolas Crouseilles; Pierre Navaro; Éric Sonnendrücker. Charge-conserving grid based methods for the Vlasov–Maxwell equations. Comptes Rendus. Mécanique, Theoretical and numerical approaches for Vlasov-maxwell equations, Volume 342 (2014) no. 10-11, pp. 636-646. doi : 10.1016/j.crme.2014.06.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.06.012/
[1] Maxwell's equations when the charge conservation is not satisfied, C. R. Acad. Sci. Paris, Ser. I, Volume 328 (1999) no. 5, pp. 431-436
[2] On the discrete conservation of the Gauss–Poisson equation of plasma physics, Commun. Numer. Methods Eng., Volume 14 (1998) no. 1, pp. 23-34
[3] Rigorous charge conservation for local electromagnetic field solvers, Comput. Phys. Commun., Volume 69 (1992), pp. 306-316
[4] Numerical charge conservation in particle-in-cell codes, Numerical Methods for Hyperbolic and Kinetic Problems, IRMA Lect. Math. Theor. Phys., vol. 7, 2005, pp. 7-28
[5] Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor, Comput. Phys. Commun., Volume 135 (2001), pp. 144-153
[6] A new charge conservation method in electromagnetic particle-in-cell simulations, Comput. Phys. Commun., Volume 156 (2004), pp. 73-85
[7] VALIS: a split-conservative scheme for the relativistic 2D Vlasov–Maxwell system, J. Comput. Phys., Volume 228 (2009), pp. 4773-4788
[8] The Piecewise Parabolic Method (PPM) for gas-dynamical simulations, J. Comput. Phys., Volume 54 (1984), pp. 174-201
[9] Conservative semi-Lagrangian schemes for the Vlasov equation, J. Comput. Phys. (2009)
- Modified Lawson Methods for Vlasov Equations, SIAM Journal on Scientific Computing, Volume 46 (2024) no. 3, p. A1574 | DOI:10.1137/22m154301x
- Numerical approximation of 3D particle beams by multi-scale paraxial Vlasov-Maxwell equations, Journal of Computational Physics, Volume 488 (2023), p. 112186 | DOI:10.1016/j.jcp.2023.112186
- Conservative semi-Lagrangian kinetic scheme coupled with implicit finite element field solver for multidimensional Vlasov Maxwell system, Communications in Nonlinear Science and Numerical Simulation, Volume 102 (2021), p. 105941 | DOI:10.1016/j.cnsns.2021.105941
- Maxwell and Magnetohydrodynamic Equations, Handbook of Numerical Methods for Hyperbolic Problems - Applied and Modern Issues, Volume 18 (2017), p. 385 | DOI:10.1016/bs.hna.2016.10.006
- GEMPIC: geometric electromagnetic particle-in-cell methods, Journal of Plasma Physics, Volume 83 (2017) no. 4 | DOI:10.1017/s002237781700040x
- Parallel implementation of a relativistic semi-Lagrangian Vlasov–Maxwell solver, The European Physical Journal D, Volume 71 (2017) no. 11 | DOI:10.1140/epjd/e2017-80188-4
- Handling the divergence constraints in Maxwell and Vlasov–Maxwell simulations, Applied Mathematics and Computation, Volume 272 (2016), p. 403 | DOI:10.1016/j.amc.2015.07.089
- An asymptotic preserving scheme for the relativistic Vlasov–Maxwell equations in the classical limit, Computer Physics Communications, Volume 209 (2016), p. 13 | DOI:10.1016/j.cpc.2016.08.001
- Hamiltonian splitting for the Vlasov–Maxwell equations, Journal of Computational Physics, Volume 283 (2015), p. 224 | DOI:10.1016/j.jcp.2014.11.029
- Hyperbolic divergence cleaning, the electrostatic limit, and potential boundary conditions for particle-in-cell codes, Journal of Computational Physics, Volume 294 (2015), p. 547 | DOI:10.1016/j.jcp.2015.04.001
Cité par 10 documents. Sources : Crossref
Commentaires - Politique