Comptes Rendus
Theoretical and numerical approaches for Vlasov–Maxwell equations
Reduced Vlasov–Maxwell simulations
Comptes Rendus. Mécanique, Volume 342 (2014) no. 10-11, pp. 619-635.

In this paper we review two different numerical methods for Vlasov–Maxwell simulations. The first method is based on a coupling between a Discontinuous Galerkin (DG) Maxwell solver and a Particle-In-Cell (PIC) Vlasov solver. The second method only uses a DG approach for the Vlasov and Maxwell equations. The Vlasov equation is first reduced to a space-only hyperbolic system thanks to the finite-element method. The two numerical methods are implemented using OpenCL in order to achieve high performance on recent Graphic Processing Units (GPU).

Published online:
DOI: 10.1016/j.crme.2014.06.008
Keywords: Vlasov–Maxwell, Model reduction, Particle-In-Cell, Discontinuous Galerkin, GPU

Philippe Helluy 1; Laurent Navoret 1; Nhung Pham 1; Anaïs Crestetto 2

1 IRMA, Université de Strasbourg & Inria TONUS, 7, rue René-Descartes, 67084 Strasbourg cedex, France
2 LMJL, Université de Nantes, 2, rue de la Houssinière, BP 92208, 44322 Nantes cedex 3, France
     author = {Philippe Helluy and Laurent Navoret and Nhung Pham and Ana{\"\i}s Crestetto},
     title = {Reduced {Vlasov{\textendash}Maxwell} simulations},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {619--635},
     publisher = {Elsevier},
     volume = {342},
     number = {10-11},
     year = {2014},
     doi = {10.1016/j.crme.2014.06.008},
     language = {en},
AU  - Philippe Helluy
AU  - Laurent Navoret
AU  - Nhung Pham
AU  - Anaïs Crestetto
TI  - Reduced Vlasov–Maxwell simulations
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 619
EP  - 635
VL  - 342
IS  - 10-11
PB  - Elsevier
DO  - 10.1016/j.crme.2014.06.008
LA  - en
ID  - CRMECA_2014__342_10-11_619_0
ER  - 
%0 Journal Article
%A Philippe Helluy
%A Laurent Navoret
%A Nhung Pham
%A Anaïs Crestetto
%T Reduced Vlasov–Maxwell simulations
%J Comptes Rendus. Mécanique
%D 2014
%P 619-635
%V 342
%N 10-11
%I Elsevier
%R 10.1016/j.crme.2014.06.008
%G en
%F CRMECA_2014__342_10-11_619_0
Philippe Helluy; Laurent Navoret; Nhung Pham; Anaïs Crestetto. Reduced Vlasov–Maxwell simulations. Comptes Rendus. Mécanique, Volume 342 (2014) no. 10-11, pp. 619-635. doi : 10.1016/j.crme.2014.06.008.

[1] P. Helluy Résolution numérique des équations de Maxwell harmoniques par une méthode d'éléments finis discontinus, Sup'aéro, 1994 (PhD thesis)

[2] F. Bourdel; P.A. Mazet; P. Helluy Resolution of the non-stationary or harmonic Maxwell equations by a discontinuous finite element method. Application to an E.M.I. (electromagnetic impulse) case, Proceedings of the 10th International Conference on Computing Methods in Applied Sciences and Engineering, 1992, pp. 405-422

[3] G. Cohen; X. Ferrieres; S. Pernet A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time domain, J. Comput. Phys., Volume 217 (2006) no. 2, pp. 340-363

[4] A. Klöckner; T. Warburton; J. Bridge; J.S. Hesthaven Nodal discontinuous Galerkin methods on graphics processors, J. Comput. Phys., Volume 228 (2009) no. 21, pp. 7863-7882 (ISSN: 0021-9991) | DOI

[5] A. Crestetto Optimisation de méthodes numériques pour la physique des plasmas. Application aux faisceaux de particules chargées, Université de Strasbourg, 2012 (PhD thesis)

[6] C.K. Birdsall; A.B. Langdon Plasma Physics via Computer Simulation, Series in Plasma Physics, Institute of Physics (IOP), 1991

[7] C.-D. Munz; P. Omnes; R. Schneider; E. Sonnendrücker; U. Voß Divergence correction techniques for Maxwell solvers based on a hyperbolic model, J. Comput. Phys., Volume 161 (2000) no. 2, pp. 484-511

[8] A. Crestetto; P. Helluy Resolution of the Vlasov–Maxwell system by PI discontinuous Galerkin method on GPU with OpenCL, CEMRACS'11: Multiscale Coupling of Complex Models in Scientific Computing, ESAIM Proc., vol. 38, EDP Sci., Les Ulis, 2012, pp. 257-274

[9] B. Fornet; V. Mouysset; Á. Rodríguez-Arós Mathematical study of a hyperbolic regularization to ensure Gauss's law conservation in Maxwell–Vlasov applications, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 4, p. 1150020 (28 pp.) (ISSN: 0218-2025) | DOI

[10] P.D. Lax; R.S. Phillips Local boundary conditions for dissipative symmetric linear differential operators, Commun. Pure Appl. Math., Volume 13 (1960) no. 3, pp. 427-455

[11] V.M. Petkov; L.N. Stoyanov Geometry of Reflecting Rays and Inverse Spectral Problems, Pure and Applied Mathematics (New York), John Wiley & Sons Ltd., Chichester, 1992 (ISBN: 0-471-93174-8)

[12] C. Johnson; J. Pitkäranta An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comput., Volume 46 (1986) no. 173, pp. 1-26 (ISSN: 0025-5718) | DOI

[13] P. Lesaint; P.-A. Raviart On a finite element method for solving the neutron transport equation, Mathematical Aspects of Finite Elements in Partial Differential Equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), vol. 33, Math. Res. Center, Univ. of Wisconsin–Madison, Academic Press, New York, 1974, pp. 89-123

[14] The Khronos Group Inc. OpenCL documentation, 2013

[15] D. Aubert; M. Amini; R. David (Lecture Notes in Computer Science), Volume vol. 5544 (2009), pp. 874-883

[16] P. Helluy A portable implementation of the radix sort algorithm in OpenCL, 2011 | HAL

[17] P. Helluy; N. Pham; A. Crestetto Space-only hyperbolic approximation of the Vlasov equation, ESAIM: Proceedings, vol. 43, 2013, pp. 17-36 | DOI | HAL

Cited by Sources:

Comments - Policy