Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.
Accepted:
Published online:
Vasily E. Tarasov 1
@article{CRMECA_2015__343_1_57_0, author = {Vasily E. Tarasov}, title = {Elasticity of fractal materials using the continuum model with non-integer dimensional space}, journal = {Comptes Rendus. M\'ecanique}, pages = {57--73}, publisher = {Elsevier}, volume = {343}, number = {1}, year = {2015}, doi = {10.1016/j.crme.2014.09.006}, language = {en}, }
Vasily E. Tarasov. Elasticity of fractal materials using the continuum model with non-integer dimensional space. Comptes Rendus. Mécanique, Volume 343 (2015) no. 1, pp. 57-73. doi : 10.1016/j.crme.2014.09.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.09.006/
[1] The Geometry of Fractal Sets, Cambridge University Press, 1985
[2] Fractals, Plenum Press, New York, 1988
[3] Analysis on Fractals, Cambridge University Press, 2001
[4] Differential Equations on Fractals, Princeton Univ. Press, Princeton and Oxford, 2006 (170 pp)
[5] Analysis on fractals, Not. Am. Math. Soc., Volume 46 (1999) no. 10, pp. 1199-1208
[6] Flux across nonsmooth boundaries and fractal Gauss/Green/Stokes' theorems, J. Phys. A, Volume 32 (1999) no. 28, pp. 5317-5328
[7] Recent developments of analysis on fractals, Transl. Am. Math. Soc., Volume 223 (2008) no. 202, pp. 81-96
[8] Laplace operators on fractals and related functional equations (topical review), J. Phys. A, Volume 45 (2012) no. 46, p. 463001 (34 pp.) | arXiv
[9] Continuous medium model for fractal media, Phys. Lett. A, Volume 336 (2005) no. 2–3, pp. 167-174 | arXiv
[10] Fractional hydrodynamic equations for fractal media, Ann. Phys., Volume 318 (2005) no. 2, pp. 286-307 | arXiv
[11] Dynamics of fractal solid, Int. J. Mod. Phys. B, Volume 19 (2005) no. 27, pp. 4103-4114 | arXiv
[12] Wave equation for fractal solid string, Mod. Phys. Lett. B, Volume 19 (2005) no. 15, pp. 721-728 | arXiv
[13] Continuum mechanics models of fractal porous media: integral relations and extremum principles, J. Mech. Mater. Struct., Volume 4 (2009) no. 5, pp. 901-912
[14] Acoustic-elastodynamic interaction in isotropic fractal media, Eur. Phys. J. Spec. Top., Volume 222 (2013) no. 8, pp. 1951-1960
[15] Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2011
[16] Static-kinematic duality and the principle of virtual work in the mechanics of fractal media, Comput. Methods Appl. Mech. Eng., Volume 191 (2001) no. 1–2, pp. 3-19
[17] A fractional calculus approach to the description of stress and strain localization in fractal media, Chaos Solitons Fractals, Volume 13 (2002) no. 1, pp. 85-94
[18] On the mechanics of quasi-brittle materials with a fractal microstructure, Eng. Fract. Mech., Volume 70 (2003) no. 15, pp. 2321-2349
[19] Calculation of the tensile and flexural strength of disordered materials using fractional calculus, Chaos Solitons Fractals, Volume 21 (2004) no. 3, pp. 623-632
[20] A fractal theory for the mechanics of elastic materials, Mater. Sci. Eng. A, Volume 365 (2004) no. 1–2, pp. 235-240
[21] A disordered microstructure material model based on fractal geometry and fractional calculus, Z. Angew. Math. Mech., Volume 84 (2004) no. 2, pp. 128-135
[22] The elastic problem for fractal media: basic theory and finite element formulation, Comput. Struct., Volume 82 (2004) no. 6, pp. 499-508
[23] Numerical modelization of disordered media via fractional calculus, Comput. Mater. Sci., Volume 30 (2004) no. 1–2, pp. 155-162
[24] Fractional calculus in solid mechanics: local versus non-local approach, Phys. Scr. T, Volume 136 (2009), p. 14003
[25] Static-kinematic fractional operators for fractal and non-local solids, Z. Angew. Math. Mech., Volume 89 (2009) no. 3, pp. 207-217
[26] Renormalization, Cambridge University Press, Cambridge, 1984
[27] Axiomatic basis for spaces with noninteger dimensions, J. Math. Phys., Volume 18 (1977) no. 6, pp. 1224-1234
[28] Equations of motion in a non-integer-dimensional space, J. Phys. A, Volume 37 (2004) no. 27, pp. 6987-7003
[29] Fractal materials, beams and fracture mechanics, Z. Angew. Math. Phys., Volume 60 (2009) no. 6, pp. 1194-1205
[30] Correction to Li and Ostoja-Starzewski 465 (2108) 2521, Proc. R. Soc. A, Volume 465 (2009) no. 2108, pp. 2521-2536 (1 p.)
[31] Waves in fractal media, J. Elast., Volume 104 (2011) no. 1–2, pp. 187-204
[32] Micropolar continuum mechanics of fractal media, Int. J. Eng. Sci., Volume 49 (2011) no. 12, pp. 1302-1310
[33] From fractal media to continuum mechanics, Z. Angew. Math. Mech. (J. Appl. Math. Mech.), Volume 94 (2014) no. 5, pp. 373-401
[34] Towards thermoelasticity of fractal media, J. Therm. Stresses, Volume 30 (2007) no. 9–10, pp. 889-896
[35] Towards thermomechanics of fractal media, Z. Angew. Math. Phys., Volume 58 (2007) no. 6, pp. 1085-1096
[36] Critical exponents in 3.99 dimensions, Phys. Rev. Lett., Volume 28 (1972) no. 4, pp. 240-243
[37] The renormalization group and the ϵ expansion, Phys. Rep., Volume 12 (1974) no. 2, pp. 75-199
[38] Regularization and renormalization of gauge fields, Nucl. Phys. B, Volume 44 (1972) no. 1, pp. 189-213
[39] Introduction to the technique of dimensional regularization, Rev. Mod. Phys., Volume 47 (1975) no. 4, pp. 849-876
[40] Quantum field — theory models in less than 4 dimensions, Phys. Rev. D, Volume 7 (1973) no. 10, pp. 2911-2926
[41] Anisotropy and isotropy: a model of fraction-dimensional space, Solid State Commun., Volume 75 (1990) no. 2, pp. 111-114
[42] Fractional dimensionality and fractional derivative spectra of interband optical transitions, Phys. Rev. B, Volume 42 (1990) no. 18, pp. 11751-11756
[43] Excitons in anisotropic solids: the model of fractional-dimensional space, Phys. Rev. B, Volume 43 (1991) no. 3, pp. 2063-2069
[44] Exciton–phonon interaction in fractional dimensional space, Phys. Rev. B, Volume 56 (1997) no. 15, pp. 9798-9804
[45] Deformation of quantum mechanics in fractional-dimensional space, J. Phys. A, Volume 34 (2001) no. 49, pp. 11059-11068 | arXiv
[46] Bose-like oscillator in fractional-dimensional space, J. Phys. A, Volume 34 (2001) no. 14, pp. 3125-3138
[47] Quantum mechanical models in fractional dimensions, J. Phys. A, Volume 37 (2004) no. 23, pp. 6181-6199
[48] On fractional Schrödinger equation in α-dimensional fractional space, Nonlinear Anal., Real World Appl., Volume 10 (2009) no. 3, pp. 1299-1304
[49] Solutions of a particle with fractional δ-potential in a fractional dimensional space, Int. J. Theor. Phys., Volume 49 (2010) no. 9, pp. 2095-2104 | arXiv
[50] Schrödinger equation in fractional space, Fractional Dynamics and Control, Springer, New York, 2012, pp. 209-215
[51] Quantum mechanics in fractional and other anomalous spacetimes, J. Math. Phys., Volume 53 (2012) no. 10, p. 102110 | arXiv
[52] Fractional Schrödinger equation with noninteger dimensions, Appl. Math. Comput., Volume 219 (2012) no. 4, pp. 2313-2319
[53] Solutions for a fractional diffusion equation with noninteger dimensions, Nonlinear Anal., Real World Appl., Volume 13 (2012) no. 4, pp. 1955-1960
[54] Fractional multipoles in fractional space, Nonlinear Anal., Real World Appl., Volume 8 (2007) no. 1, pp. 198-203
[55] On electromagnetic field in fractional space, Nonlinear Anal., Real World Appl., Volume 11 (2010) no. 1, pp. 288-292
[56] Lagrangian formulation of Maxwell's field in fractional D dimensional space–time, Rom. Rep. Phys., Volume 55 (2010) no. 7–8, pp. 659-663
[57] The wave equation and general plane wave solutions in fractional space, Prog. Electromagn. Res. Lett., Volume 19 (2010), pp. 137-146
[58] On electromagnetic wave propagation in fractional space, Nonlinear Anal., Real World Appl., Volume 12 (2011) no. 5, pp. 2844-2850
[59] An exact solution of the spherical wave equation in D-dimensional fractional space, J. Electromagn. Waves Appl., Volume 25 (2011) no. 10, pp. 1481-1491
[60] An exact solution of cylindrical wave equation for electromagnetic field in fractional dimensional space, Prog. Electromagn. Res., Volume 114 (2011), pp. 443-455
[61] The meaning of the vector Laplacian, J. Franklin Inst., Volume 256 (1953) no. 6, pp. 551-558
[62] Electromagnetic Fields and Waves in Fractional Dimensional Space, Springer, Berlin, 2012
[63] On the role of gradients in the localization of deformation and fracture, Int. J. Eng. Sci., Volume 30 (1992) no. 10, pp. 1279-1299
[64] On the structure of the mode-Ill crack-tip in gradient elasticity, Scr. Metall. Mater., Volume 26 (1992) no. 2, pp. 319-324
[65] A simple approach to solve boundary-value problems in gradient elasticity, Acta Mech., Volume 101 (1993) no. 1, pp. 59-68
[66] Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results, Int. J. Solids Struct., Volume 48 (2011) no. 13, pp. 1962-1990
[67] Thermoelasticity, Springer-Verlag, Vien, New York, 1976
[68] Basiñs of Thermoelasticity, Naukova Dumka, Kiev, 1970 (in Russian)
[69] Thermoelasticity with Finite Wave Speeds, Oxford, 2009
[70] Theory of Elasticity, Oxford, 1986
[71] Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 (353 pp)
[72] Riesz fractional derivatives and fractional dimensional space, Int. J. Theor. Phys., Volume 49 (2010) no. 2, pp. 270-275
[73] Extremum and variational principles for elastic and inelastic media with fractal geometries, Acta Mech., Volume 205 (2009) no. 1–4, pp. 161-170
[74] Anisotropic fractal media by vector calculus in non-integer dimensional space, J. Math. Phys., Volume 55 (2014) no. 8, p. 083510
[75] Vector calculus in non-integer dimensional space and its applications to fractal media, Commun. Nonlinear Sci. Numer. Simul., Volume 20 (2015) no. 2, pp. 360-374
Cited by Sources:
Comments - Policy