Comptes Rendus
Micromechanical modeling of the elasto-viscoplastic behavior of granite
Comptes Rendus. Mécanique, Volume 343 (2015) no. 2, pp. 121-132.

We present in this paper a micromechanics-based elasto-viscoplastic approach for modeling the time-dependent deformation of granite. Inspired by the polycrystalline theory of metallic materials, the sliding behavior in an individual grain is regarded as the sole source of plastic deformation, which is characterized by a Mohr–Coulomb-type yield criterion and a non-associated plastic potential. The micro–macro transition is realized within the framework of Hill's self-consistent approach. The performance of the proposed model is evaluated by several case studies and by reproducing experimental data.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2014.11.005
Keywords: Micromechanical, Self-consistent, Polycrystalline theory, Elasto-viscoplastic, Granite

Tao Zeng 1, 2; Jian-Fu Shao 1, 2; Wei-Ya Xu 1

1 Hohai University, Nanjing 210098, China
2 Laboratoire de mécanique de Lille, UMR 8107 CNRS, cité scientifique, 59655 Villeneuve-d'Ascq cedex, France
@article{CRMECA_2015__343_2_121_0,
     author = {Tao Zeng and Jian-Fu Shao and Wei-Ya Xu},
     title = {Micromechanical modeling of the elasto-viscoplastic behavior of granite},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {121--132},
     publisher = {Elsevier},
     volume = {343},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crme.2014.11.005},
     language = {en},
}
TY  - JOUR
AU  - Tao Zeng
AU  - Jian-Fu Shao
AU  - Wei-Ya Xu
TI  - Micromechanical modeling of the elasto-viscoplastic behavior of granite
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 121
EP  - 132
VL  - 343
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2014.11.005
LA  - en
ID  - CRMECA_2015__343_2_121_0
ER  - 
%0 Journal Article
%A Tao Zeng
%A Jian-Fu Shao
%A Wei-Ya Xu
%T Micromechanical modeling of the elasto-viscoplastic behavior of granite
%J Comptes Rendus. Mécanique
%D 2015
%P 121-132
%V 343
%N 2
%I Elsevier
%R 10.1016/j.crme.2014.11.005
%G en
%F CRMECA_2015__343_2_121_0
Tao Zeng; Jian-Fu Shao; Wei-Ya Xu. Micromechanical modeling of the elasto-viscoplastic behavior of granite. Comptes Rendus. Mécanique, Volume 343 (2015) no. 2, pp. 121-132. doi : 10.1016/j.crme.2014.11.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.11.005/

[1] J.F. Shao; K.T. Chau; X.T. Feng Modeling of anisotropic damage and creep deformation in brittle rocks, Int. J. Rock Mech. Min. Sci., Volume 43 (2006), pp. 582-592

[2] Q.Z. Zhu; D. Kondo; J.F. Shao; V. Pensée Micromechanical modelling of anisotropic damage in brittle rocks and application, Int. J. Rock Mech. Min. Sci., Volume 45 (2008), pp. 467-477

[3] Q.Z. Zhu; J.F. Shao; D. Kondo A micromechanics-based elastoplastic damage model for granular materials at low confining pressure, Int. J. Plast., Volume 26 (2010), pp. 586-602

[4] U.F. Kocks; C.N. Tomé; H.R. Wenk Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, Cambridge University Press, Cambridge, UK, 2000

[5] A. Molinari; G. Canova; S. Ahzi A self-consistent approach of the large deformation polycrystal viscoplasticity, Acta Metall., Volume 35 (1987), pp. 2983-2994

[6] R.A. Lebensohn; C.N. Tomé A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals, Acta Metall. Mater., Volume 41 (1993), pp. 2611-2624

[7] R. Soulié; S. Mérillou; O. Terraz; D. Ghazanfarpour Modeling and rendering of heterogeneous granular materials: granite application, Comput. Graph. Forum, Volume 26 (2007), pp. 66-79

[8] A.V. Hershey The elasticity of an isotropic aggregate of anisotropic cubic crystals, J. Appl. Mech., Volume 21 (1954), pp. 236-240

[9] R. Hill Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, Volume 13 (1965), pp. 89-101

[10] D. Peric; D.R.J. Owen A model for finite strain elasto-plasticity based on logarithmic strains: computational issues, Comput. Methods Appl. Mech. Eng., Volume 94 (1992), pp. 35-61

[11] G.I. Taylor Plastic strain in metals, J. Inst. Met., Volume 62 (1938), pp. 307-324

[12] C. Miehe; J. Schröder A comparative study of stress update algorithms for rate-independent and rate-dependent crystal plasticity, Int. J. Numer. Methods Eng., Volume 50 (2001), pp. 273-298

[13] P. Pilvin Approches multi-échelles pour la prévision du comportement anélastique des métaux, Université Pierre et Marie Curie, 1990 (Ph.D. thesis)

[14] K. Yoshida; R. Brenner; B. Bacroix; S. Bouvier Effect of regularization of Schmid law on self-consistent estimates for rate-independent plasticity of polycrystals, Eur. J. Mech. A, Solids, Volume 28 (2009), pp. 905-915

[15] M.V. Nebozhyn; P. Gilormini; P.P. Castaneda Variational self-consistent estimates for cubic viscoplastic polycrystals: the effects of grain anisotropy and shape, J. Mech. Phys. Solids, Volume 49 (2001), pp. 313-340

[16] J.F. Shao; D. Hoxha; M. Bart; F. Homand; G. Duveau; M. Souley; N. Hoteit Modelling of induced anisotropic damage in granites, Int. J. Rock Mech. Min. Sci., Volume 36 (1999), pp. 1001-1012

[17] C.D. Martin; R.S. Read; J.B. Martino Observations of brittle failure around a circular test tunnel, Int. J. Rock Mech. Min. Sci., Volume 34 (1997), pp. 1065-1073

[18] T. Zeng; J.F. Shao; W.Y. Xu Multiscale modeling of cohesive geomaterials with a polycrystalline approach, Mech. Mater., Volume 69 (2014), pp. 132-145

Cited by Sources:

Comments - Policy