Comptes Rendus
Numerical limit analysis and plasticity criterion of a porous Coulomb material with elliptic cylindrical voids
Comptes Rendus. Mécanique, Volume 343 (2015) no. 3, pp. 199-209.

The paper is devoted to a numerical Limit Analysis of a hollow cylindrical model with a Coulomb solid matrix (of confocal boundaries) considered in the case of a generalized plane strain. To this end, the static approach of Pastor et al. (2008) [18] for Drucker–Prager materials is first extended to Coulomb problems. A new mixed—but rigorously kinematic—code is elaborated for Coulomb problems in the present case of symmetry, resulting also in a conic programming approach. Owing to the good conditioning of the resulting optimization problems, both methods give very close bounds by allowing highly refined meshes, as verified by comparing to existing exact solutions. In a second part, using the identity of Tresca (as special case of Coulomb) and von Mises materials in plane strain, the codes are used to assess the corresponding results of Mariani and Corigliano (2001) [13] and of Madou and Leblond (2012) [11] for circular and elliptic cylindrical voids in a von Mises matrix. Finally, the Coulomb problem is investigated, also in terms of projections on the coordinate planes of the principal macroscopic stresses.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2014.12.004
Keywords: Gurson-type models, Cylindrical voids, Porous Coulomb material, Micromechanics, Limit analysis, Static and mixed methods, Conic programming

Franck Pastor 1; Joseph Pastor 2; Djimedo Kondo 3

1 Athénée royal Victor-Horta, rue de la Rhétorique, 16, Bruxelles, Belgium
2 Laboratoire LOCIE, UMR 5271 CNRS, Université de Savoie, 73376 Le Bourget-du-Lac, France
3 Institut Jean-Le-Rond-D'Alembert, UMR 7190 CNRS, UPMC, 75252 Paris cedex 05, France
@article{CRMECA_2015__343_3_199_0,
     author = {Franck Pastor and Joseph Pastor and Djimedo Kondo},
     title = {Numerical limit analysis and plasticity criterion of a porous {Coulomb} material with elliptic cylindrical voids},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {199--209},
     publisher = {Elsevier},
     volume = {343},
     number = {3},
     year = {2015},
     doi = {10.1016/j.crme.2014.12.004},
     language = {en},
}
TY  - JOUR
AU  - Franck Pastor
AU  - Joseph Pastor
AU  - Djimedo Kondo
TI  - Numerical limit analysis and plasticity criterion of a porous Coulomb material with elliptic cylindrical voids
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 199
EP  - 209
VL  - 343
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2014.12.004
LA  - en
ID  - CRMECA_2015__343_3_199_0
ER  - 
%0 Journal Article
%A Franck Pastor
%A Joseph Pastor
%A Djimedo Kondo
%T Numerical limit analysis and plasticity criterion of a porous Coulomb material with elliptic cylindrical voids
%J Comptes Rendus. Mécanique
%D 2015
%P 199-209
%V 343
%N 3
%I Elsevier
%R 10.1016/j.crme.2014.12.004
%G en
%F CRMECA_2015__343_3_199_0
Franck Pastor; Joseph Pastor; Djimedo Kondo. Numerical limit analysis and plasticity criterion of a porous Coulomb material with elliptic cylindrical voids. Comptes Rendus. Mécanique, Volume 343 (2015) no. 3, pp. 199-209. doi : 10.1016/j.crme.2014.12.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.12.004/

[1] A.L. Gurson Continuum theory of ductile rupture by void nucleation and growth—part I: yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., Volume 99 (1977), pp. 2-15

[2] J. Lee; J. Oung Yield functions and flow rules for porous pressure-dependent strain-hardening polymeric materials, J. Appl. Mech., Volume 67 (2000), pp. 288-297

[3] T.F. Guo; J. Faleskog; C.F. Shih Continuum modeling of a porous solid with pressure sensitive dilatant matrix, J. Mech. Phys. Solids, Volume 56 (2008), pp. 2188-2212

[4] P. Thoré; F. Pastor; J. Pastor Hollow sphere models, conic programming and third stress invariant, Eur. J. Mech. A, Solids, Volume 30 (2011), pp. 63-71

[5] M. Gologanu; J. Leblond Approximate models for ductile metals containing non-spherical voids—case of axisymmetric prolate ellipsoidal cavities, J. Mech. Phys. Solids, Volume 41 (1993) no. 11, pp. 1723-1754

[6] M. Gologanu; J. Leblond; G. Perrin; J. Devaux Approximate models for ductile metals containing non-spherical voids—case of axisymmetric oblate ellipsoidal cavities, J. Eng. Mater. Technol., Volume 116 (1994), pp. 290-297

[7] M. Garajeu; P. Suquet A micromechanical approach of damage in viscoplastic materials by evolution in size, shape and distribution of voids, Comput. Methods Appl. Mech. Eng., Volume 183 (2000), pp. 223-246

[8] V. Monchiet; E. Charkaluk; D. Kondo An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields, C. R. Mecanique, Volume 335 (2007), pp. 32-41

[9] V. Monchiet; O. Cazacu; E. Charkaluk; D. Kondo Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids, Int. J. Plast., Volume 24 (2008), pp. 1158-1189

[10] V. Monchiet; E. Charkaluk; D. Kondo Macroscopic yield criteria for ductile materials containing spheroidal voids: an Eshelby-like velocity fields approach, Mech. Mater., Volume 72 (2014), pp. 1-18

[11] K. Madou; J.-B. Leblond A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—II: determination of yield criterion parameters, J. Mech. Phys. Solids, Volume 60 (2012), pp. 1037-1058

[12] K. Madou; J.-B. Leblond A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—I: limit-analysis of some representative cells, J. Mech. Phys. Solids, Volume 60 (2012), pp. 1020-1036

[13] S. Mariani; A. Corigliano Anisotropic behavior of porous, ductile media, Int. J. Solids Struct., Volume 38 (2001), pp. 2427-2451

[14] H. Thai-The; P. Francescato; J. Pastor Limit analysis of unidirectional porous media, Mech. Res. Commun., Volume 25 (1998), pp. 535-542

[15] P. Francescato; J. Pastor; B. Riveill-Reydet Ductile failure of cylindrically porous materials—part I: plane stress problem and experimental results, Eur. J. Mech. A, Solids, Volume 23 (2004), pp. 181-190

[16] J. Pastor; P. Francescato; M. Trillat; E. Loute; G. Rousselier Ductile failure of cylindrically porous materials—part II: other cases of symmetry, Eur. J. Mech. A, Solids, Volume 23 (2004), pp. 191-201

[17] J. Pastor; P.P. Castaneda Yield criteria for porous media in plane strain: second-order estimates versus numerical results, C. R. Mecanique, Volume 330 (2002), pp. 741-747

[18] F. Pastor; P. Thoré; E. Loute; J. Pastor; M. Trillat Convex optimization and limit analysis: application to Gurson and porous Drucker–Prager materials, Eng. Fract. Mech., Volume 75 (2008), pp. 1367-1383

[19] A. Benallal; R. Desmorat; M. Fournage An assessment of the role of the third stress invariant in the Gurson approach for ductile fracture, Eur. J. Mech. A, Solids, Volume 47 (2014), pp. 400-414

[20] P. Francescato; J. Pastor Lower and upper numerical bounds to the off-axis strength of unidirectional fiber-reinforced composites by limit analysis methods, Eur. J. Mech. A, Solids, Volume 16 (1997), pp. 213-234

[21] M. Gueguin; G. Hassen; P. de Buhan Numerical assessment of the macroscopic strength criterion of reinforced soils using semidefinite programming, Int. J. Numer. Methods Eng., Volume 99 (2014), pp. 522-541

[22] F. Pastor; J. Pastor; D. Kondo Limit analysis and lower/upper bounds to the macroscopic criterion of Drucker–Prager materials with spheroidal voids, C. R. Mecanique, Volume 342 (2014), pp. 96-105

[23] F. Pastor; D. Kondo; J. Pastor 3D-FEM formulations of limit analysis methods for porous pressure-sensitive materials, Int. J. Numer. Methods Eng., Volume 95 (2013), pp. 847-870

[24] E. Anderheggen; H. Knopfel Finite element limit analysis using linear programming, Int. J. Solids Struct., Volume 8 (1972), pp. 1413-1431

[25] K. Krabbenhoft; A. Lyamin; M. Hijaj; S. Sloan A new discontinuous upper bound limit analysis formulation, Int. J. Numer. Methods Eng., Volume 63 (2005), pp. 1069-1088

[26] F. Pastor Résolution par des méthodes de point intérieur de problèmes de programmation convexe posés par l'analyse limite, Notre-Dame de la Paix, Namur, 2007 (Thèse de doctorat, Facultés universitaires)

[27] F. Pastor; E. Loute; J. Pastor; M. Trillat Mixed method and convex optimization for limit analysis of homogeneous Gurson materials: a kinematical approach, Eur. J. Mech. A, Solids, Volume 28 (2009), pp. 25-35

[28] J. Salençon Calcul à la Rupture et Analyse Limite, Presses des Ponts et Chaussées, Paris, 1983

[29] MOSEK ApS, C/O Symbion Science Park, Fruebjergvej 3, Box 16, 2100 Copenhagen ϕ, Denmark, http://www.mosek.com (2010).

[30] K. Madou Contribution à l'étude des effets de forme des cavités en rupture ductile des métaux, Université Paris-6, 2012 (Thèse de doctorat)

Cited by Sources:

Comments - Policy