Comptes Rendus
A porous model to simulate the evolution of the soil–water characteristic curve with volumetric strains
Comptes Rendus. Mécanique, Volume 343 (2015) no. 4, pp. 264-274.

Volumetric strains modify the soil–water retention curve. An easy way to take this phenomenon into account is by means of a percolation model based on the pore size distribution of the material. The model proposed herein is able to simulate the retention curves during wetting–drying cycles. As volumetric deformations modify the pore size distribution, its effect on the retention curves can be easily included in the model. The model is validated by comparing some numerical results with experimental results. This procedure represents an option to create fully coupled constitutive models for unsaturated soils.

Published online:
DOI: 10.1016/j.crme.2015.02.001
Keywords: Unsaturated soils, Retention curve, Hysteresis, Constitutive modeling, Geotechnical models

Hiram Arroyo 1; Eduardo Rojas 1; María de la Luz Pérez-Rea 1; Jaime Horta 1; José Arroyo 2

1 Faculty of Engineering, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, 76160, Querétaro, Qro., Mexico
2 Faculty of Civil Engineering, Universidad Michoacana de San Nicolás de Hidalgo, Centro Universitario, Avenida Francisco J. Mújica S/N, 58030, Morelia, Mich., Mexico
     author = {Hiram Arroyo and Eduardo Rojas and Mar{\'\i}a de la Luz P\'erez-Rea and Jaime Horta and Jos\'e Arroyo},
     title = {A porous model to simulate the evolution of the soil{\textendash}water characteristic curve with volumetric strains},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {264--274},
     publisher = {Elsevier},
     volume = {343},
     number = {4},
     year = {2015},
     doi = {10.1016/j.crme.2015.02.001},
     language = {en},
AU  - Hiram Arroyo
AU  - Eduardo Rojas
AU  - María de la Luz Pérez-Rea
AU  - Jaime Horta
AU  - José Arroyo
TI  - A porous model to simulate the evolution of the soil–water characteristic curve with volumetric strains
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 264
EP  - 274
VL  - 343
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2015.02.001
LA  - en
ID  - CRMECA_2015__343_4_264_0
ER  - 
%0 Journal Article
%A Hiram Arroyo
%A Eduardo Rojas
%A María de la Luz Pérez-Rea
%A Jaime Horta
%A José Arroyo
%T A porous model to simulate the evolution of the soil–water characteristic curve with volumetric strains
%J Comptes Rendus. Mécanique
%D 2015
%P 264-274
%V 343
%N 4
%I Elsevier
%R 10.1016/j.crme.2015.02.001
%G en
%F CRMECA_2015__343_4_264_0
Hiram Arroyo; Eduardo Rojas; María de la Luz Pérez-Rea; Jaime Horta; José Arroyo. A porous model to simulate the evolution of the soil–water characteristic curve with volumetric strains. Comptes Rendus. Mécanique, Volume 343 (2015) no. 4, pp. 264-274. doi : 10.1016/j.crme.2015.02.001.

[1] N. Lu; W.J. Likos Unsaturated Soil Mechanics, John Wiley & Sons, New York, 2004

[2] A. Gens; M. Sánchez; D. Sheng On constitutive modelling of unsaturated soils, Acta Geotech., Volume 1 (2006)

[3] G.T. Houlsby The work input to an unsaturated granular material, Geotechnique, Volume 47 (1997), pp. 193-196

[4] R. Brooks; A. Corey Hydraulic properties of porous media, Hydrol. Pap., Colo. State Univ. (1964), pp. 1-24

[5] N. Khalili; M.A. Habte; S. Zargarbashi A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hysteresis, Comput. Geotech., Volume 35 (2008), pp. 872-889

[6] A. Assouline Modeling the relationship between soil bulk density and the water retention curve, Vadose Zone J., Volume 5 (2006), pp. 554-563

[7] D. Gallipoli A hysteretic soil-water retention model accounting for cyclic variations of suction and void ratio, Geotechnique, Volume 62 (2012), pp. 605-616

[8] E. Romero; J. Vaunat Retention curves of deformable clays, Trento, Italy (2000)

[9] J. Vaunat; E. Romero; C. Jommi An elastoplastic hydro-mechanical model for unsaturated soils (A.E. Tarantino; C. Mancuso; C.E. Mancuso, eds.), Experimental Evidence and Theoretical Approaches in Unsaturated Soils, A.A. Balkema, Trento, Italy, 2000

[10] M.T. van Genutchen A closed form equation of predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., Volume 44 (1980), pp. 892-898

[11] A. Koliji; L. Laloui; O. Cuisinier; L. Vulliet Suction induced effects on the fabric of a structured soil, Transp. Porous Media, Volume 64 (2006), pp. 261-278

[12] H. Arroyo; E. Rojas; M.L. Pérez-Rea; J. Horta; J. Arroyo Simulation of the shear strength for unsaturated soils, C. R. Mecanique, Volume 341 (2013), pp. 727-742

[13] E. Rojas; M.L. Pérez-Rea; G. Gallegos; J. Leal A porous model for the interpretation of mercury porosimetry tests, J. Porous Media, Volume 15 (2012), pp. 517-530

[14] P. Delage; M. Audiguier; Y.J. Cui; M.D. Howat Microstructure of a compacted silt, Can. Geotech. J., Volume 33 (1996), pp. 150-158

[15] P.H. Simms; E.K. Yanful A pore-network model for hydro-mechanical coupling in unsaturated compacted clayey soils, Can. Geotech. J., Volume 42 (2005), pp. 499-514

[16] E. Romero; C. Hoffmann; E. Castellanos; J. Suriol; A. Lloret Microstructural changes of compacted bentonite induced by hydro-mechanical actions (E.E. Alonso; A. Ledesma, eds.), Advances in Understanding Engineered Clay Barriers, Balkema, Rotterdam, The Netherlands, 2005

[17] O. Cuisinier; L. Laloui Fabric evolution during hydromechanical loading of a compacted silt, Int. J. Numer. Anal. Methods Geomech., Volume 28 (2004), pp. 483-499

[18] A.E. Tarantino; E. De Col Compaction behaviour of clay, Geotechnique, Volume 58 (2008), pp. 199-213

[19] P.H. Simms; E.K. Yanful Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil–water characteristic curve tests, Can. Geotech. J., Volume 38 (2001), pp. 741-754

[20] J.J.M. van der Meer; J. Menzies; J. Rose Subglacial till: the deforming glacier bed, Quat. Sci. Rev., Volume 22 (2003), pp. 1659-1685

[21] L. Barden; A. McGown; K. Collins The collapse mechanism in partly saturated soil, Eng. Geol., Volume 7 (1973), pp. 49-60

[22] A. El Howayek, P. Huang, R. Bisnett, M.C. Santagata, Identification and behavior of collapsible soils, Joint Transportation Research Program, 2011.

[23] D.P. Coduto Foundation Design, Principles and Practices, Prentice Hall, Upper Saddle River, NJ, USA, 1994

[24] Y.J. Cui; C. Loiseau; P. Delage Microstructure changes of a confined swelling soil due to suction controlled hydration (J.F.T. Jucá; T.M.P.d. Campos; F.A.M. Marinho, eds.), Unsaturated Soils, Balkema, Leiden, The Netherlands, 2002

[25] R. Thom; R. Sivakumar; V. Sivakumar; E.J. Murray; P. Mackinnon Pore size distribution of unsaturated compacted kaolin: the initial states and final states following saturation, Geotechnique, Volume 57 (2007), pp. 469-474

[26] J. Horta; E. Rojas; M.L. Pérez-Rea; T. López; J.B. Zaragoza A random solid–porous model to simulate the retention curves of soils, Int. J. Numer. Anal. Methods Geomech., Volume 37 (2013)

[27] E. Rojas; A.G. Zepeda; M.L. Pérez-Rea; J. Leal; G. Gallegos A four elements porous model to estimate the strength of unsaturated soils, Geotech. Geolog. Eng., Volume 29 (2009), pp. 193-202

[28] E. Rojas; J. Horta; T. López-Lara; J.B. Hernández A probabilistic solid porous model to determine the shear strength of unsaturated soils, Probab. Eng. Mech., Volume 26 (2011)

[29] C.W.W. Ng; Y.W. Pang Experimental investigations of the soil-water characteristics of a volcanic soil, Can. Geotech. J., Volume 37 (2000), pp. 1252-1264

[30] D.A. Sun; D.C. Sheng; H.B. Cui; S.W. Sloan A density-dependent elastoplastic hydro-mechanical model for unsaturated compacted soils, Int. J. Numer. Anal. Methods Geomech., Volume 31 (2007), pp. 1257-1279

Cited by Sources:

Comments - Policy