The analysis of materials mechanical behavior involves many computational challenges. In this work, we are addressing the transient simulation of the mechanical behavior when the time of interest is much larger than the characteristic time of the mechanical response. This situation is encountered in many applications, as for example in the simulation of materials aging, or in structural analysis when small-amplitude oscillatory loads are applied during a long period, as it occurs for example when characterizing viscoelastic behaviors by calculating the complex modulus or when addressing fatigue simulations. Moreover, in the case of viscoelastic behaviors, the constitutive equation is many times expressed in an integral form avoiding the necessity of using internal variables, fact that results in an integro-differential model. In order to efficiently simulate such a model, we explore in this work the use of a space-time separated representation.
L'analyse du comportement mécanique des matériaux entraîne de nombreuses difficultés du point de vue numérique. Dans ce travail, nous allons nous focaliser sur l'une d'entre elles, celle associée à la simulation transitoire du comportement mécanique quand l'intervalle temporel d'intérêt est substantiellement plus long que le temps caractéristique associé à la réponse mécanique. Cette situation est fréquemment retrouvée dans la caractérisation rhéologique des matériaux viscoélastiques (pour la détermination du module complexe) ainsi que quand on s'attaque à la simulation de la fatigue. De plus, dans le cas des matriaux viscoélastiques, le comportement est généralement décrit par une loi de comportement intégrale qui évite le besoin d'utiliser des variables internes, donnant lieu à un modèle mécanique integro-différentiel. Pour une résolution efficace, nous analysons ici l'utilisation d'une représentation séparée en espace-temps.
Accepted:
Published online:
Mots-clés : PGD, Viscoélasticité, Modèle integro-differentiel, Fatigue
Amine Ammar 1, 2; Ali Zghal 1; Franck Morel 2; Francisco Chinesta 3
@article{CRMECA_2015__343_4_247_0, author = {Amine Ammar and Ali Zghal and Franck Morel and Francisco Chinesta}, title = {On the space-time separated representation of integral linear viscoelastic models}, journal = {Comptes Rendus. M\'ecanique}, pages = {247--263}, publisher = {Elsevier}, volume = {343}, number = {4}, year = {2015}, doi = {10.1016/j.crme.2015.02.002}, language = {en}, }
TY - JOUR AU - Amine Ammar AU - Ali Zghal AU - Franck Morel AU - Francisco Chinesta TI - On the space-time separated representation of integral linear viscoelastic models JO - Comptes Rendus. Mécanique PY - 2015 SP - 247 EP - 263 VL - 343 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2015.02.002 LA - en ID - CRMECA_2015__343_4_247_0 ER -
%0 Journal Article %A Amine Ammar %A Ali Zghal %A Franck Morel %A Francisco Chinesta %T On the space-time separated representation of integral linear viscoelastic models %J Comptes Rendus. Mécanique %D 2015 %P 247-263 %V 343 %N 4 %I Elsevier %R 10.1016/j.crme.2015.02.002 %G en %F CRMECA_2015__343_4_247_0
Amine Ammar; Ali Zghal; Franck Morel; Francisco Chinesta. On the space-time separated representation of integral linear viscoelastic models. Comptes Rendus. Mécanique, Volume 343 (2015) no. 4, pp. 247-263. doi : 10.1016/j.crme.2015.02.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.02.002/
[1] The use of the Karhunen–Loève decomposition for the modelling of distributed parameter systems, Chem. Eng. Sci., Volume 51 (1996), pp. 81-98
[2] The reduced basis element method: application to a thermal fin problem, SIAM J. Sci. Comput., Volume 26 (2004) no. 1, pp. 240-258
[3] Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis, Int. J. Numer. Methods Eng., Volume 62 (2005), pp. 774-797
[4] POD and CVT-based reduced-order modeling of Navier–Stokes flows, Comput. Methods Appl. Mech. Eng., Volume 196 (2006), pp. 337-355
[5] Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data, Comput. Methods Appl. Mech. Eng., Volume 196 (2007), pp. 1030-1047
[6] On the reduction of kinetic theory models related to finitely extensible dumbbells, J. Non-Newton. Fluid Mech., Volume 134 (2006), pp. 136-147
[7] Real-time deformable models of non-linear tissues by model reduction techniques, Comput. Methods Programs Biomed., Volume 91 (2008), pp. 223-231
[8] Model order reduction for hyperelastic materials, Int. J. Numer. Methods Biomed. Eng., Volume 81 (2010) no. 9, pp. 1180-1206
[9] Accounting for large deformations in real-time simulations of soft tissues based on reduced order models, Comput. Methods Programs Biomed., Volume 105 (2012), pp. 1-12
[10] Real time simulation of surgery by reduced order modelling and X-FEM techniques, Int. J. Numer. Methods Biomed. Eng., Volume 28 (2012) no. 5, pp. 574-588
[11] Reduced numerical modeling of flows involving liquid–crystalline polymeres, J. Non-Newton. Fluid Mech., Volume 160 (2009), pp. 140-156
[12] Efficient mould cooling optimization by using model reduction, Int. J. Material Form., Volume 4 (2011) no. 1, pp. 71-82
[13] An efficient a priori model reduction for boundary element models, Eng. Anal. Bound. Elem., Volume 29 (2005), pp. 796-801
[14] On the a priori model reduction: overview and recent developments, Arch. Comput. Methods Eng., Volume 13 (2006) no. 1, pp. 91-128
[15] A reduced-basis element method, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 195-200
[16] A priori convergence theory for reduced-basis approximations of single-parametric elliptic partial differential equations, J. Sci. Comput., Volume 17 (2002) no. 1–4, pp. 437-446
[17] Certified real-time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced-basis a posteriori error bounds, Int. J. Numer. Methods Fluids, Volume 47 (2005), pp. 773-788
[18] Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations—application to transport and continuum mechanics, Arch. Comput. Methods Eng., Volume 15 (2008) no. 3, pp. 229-275
[19] The large time increment method for the analyze of structures with nonlinear constitutive relation described by internal variables, C. R. Acad. Sci. Paris, Ser. I, Volume 309 (1989), pp. 1095-1099
[20] A multiscale computational method with time and space homogenization, C. R. Mecanique, Volume 330 (2002) no. 10, pp. 683-689
[21] A multiscale computational approach for contact problems, Comput. Methods Appl. Mech. Eng., Volume 191 (2002) no. 43, pp. 4869-4891
[22] On a multiscale computational strategy with time and space homogenization for structural mechanics, Comput. Methods Appl. Mech. Eng., Volume 192 (2003) no. 28–30, pp. 3061-3087
[23] On a mixed and multiscale domain decomposition method, Comput. Methods Appl. Mech. Eng., Volume 96 (2007), pp. 1526-1540
[24] The Latin multiscale computational method and the proper generalized decomposition, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 21–22, pp. 1287-1296
[25] A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, J. Non-Newton. Fluid Mech., Volume 139 (2006), pp. 153-176
[26] A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: Transient simulation using space-time separated representation, J. Non-Newton. Fluid Mech., Volume 144 (2007), pp. 98-121
[27] The nanometric and micrometric scales of the structure and mechanics of materials revisited: an introduction to the challenges of fully deterministic numerical descriptions, Int. J. Multiscale Comput. Eng., Volume 6 (2008) no. 3, pp. 191-213
[28] Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions, Int. J. Numer. Methods Biomed. Eng., Volume 28 (2012) no. 9, pp. 960-973
[29] On the solution of the multidimensional Langer's equation by using the proper generalized decomposition method for modeling phase transitions, Model. Simul. Mater. Sci. Eng., Volume 20 (2012) no. 1, p. 015007
[30] Solving parametric complex fluids models in rheometric flows, J. Non-Newton. Fluid Mech., Volume 165 (2010), pp. 1588-1601
[31] On the deterministic solution of multidimensional parametric models by using the proper generalized decomposition, Math. Comput. Simul., Volume 81 (2010), pp. 791-810
[32] Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: application to pultrusion, Composites, Part A, Appl. Sci. Manuf., Volume 42 (2011), pp. 1169-1178
[33] Proper generalized decomposition based dynamic data-driven control of thermal processes, Comput. Methods Appl. Mech. Eng., Volume 213 (2012), pp. 29-41
[34] Proper generalized decomposition based dynamic data-driven inverse identification, Math. Comput. Simul., Volume 82 (2012) no. 9, pp. 1677-1695
[35] Non-incremental PGD solution of parametric uncoupled models defined in evolving domains, Int. J. Numer. Methods Eng., Volume 93 (2013) no. 8, pp. 887-904
[36] Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models, Arch. Comput. Methods Eng., Volume 17 (2010) no. 4, pp. 327-350
[37] An overview of the proper generalized decomposition with applications in computational rheology, J. Non-Newton. Fluid Mech., Volume 166 (2011), pp. 578-592
[38] A short review in model order reduction based on proper generalized decomposition, Arch. Comput. Methods Eng., Volume 18 (2011), pp. 395-404
[39] Parametric PGD based computational vademecum for efficient design, optimization and control, Arch. Comput. Methods Eng., Volume 20 (2013) no. 1, pp. 31-59
[40] Non-incremental strategies based on separated representations: applications in computational rheology, Commun. Math. Sci., Volume 8 (2010) no. 3, pp. 671-695
[41] Proper generalized decomposition of multiscale models, Int. J. Numer. Methods Biomed. Eng., Volume 83 (2010) no. 8–9, pp. 1114-1132
[42] Proper generalized decomposition of time-multiscale models, Int. J. Numer. Methods Biomed. Eng., Volume 90 (2012) no. 5, pp. 569-596
[43] Routes for efficient computational homogenization of non-linear materials using the proper generalized decomposition, Arch. Comput. Methods Eng., Volume 17 (2010) no. 4, pp. 373-391
[44] Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity, Comput. Methods Appl. Mech. Eng., Volume 201 (2012), pp. 1-12
[45] F. Chinesta, A. Leygue, B. Bognet, Ch. Ghnatios, F. Poulhaon, F. Bordeu, A. Barasinski, A. Poitou, S. Chatel, S. Maison-Le-Poec, First steps towards an advanced simulation of composites manufacturing by automated tape placement, Int. J. Material Form., . | DOI
[46] Towards a framework for non-linear thermal models in shell domains, Int. J. Numer. Methods Heat Fluid Flow, Volume 23 (2013) no. 1, pp. 55-73
[47] Separated representations of 3D elastic solutions in shell geometries, Adv. Model. Simul. Eng. Sci., Volume 1 (2014), p. 4 www.amses-journal.com/content/1/1/4
[48] Recent advances in the use of separated representations, Int. J. Numer. Methods Biomed. Eng., Volume 81 (2010) no. 5, pp. 637-659
[49] C. Ghnatios, G. Xu, M. Visonneau, A. Leygue, F. Chinesta, On the space separated representation when addressing the solution of PDE in complex domains, AIMS J., submitted for publication.
[50] The proper generalized decomposition for advanced numerical simulations. A primer, Springer briefs, Springer, 2014
[51] An error estimator for separated representations of highly multidimensional models, Comput. Methods Appl. Mech. Eng., Volume 199 (2010), pp. 1872-1880
[52] On the verification of model reduction methods based on the proper generalized decomposition, Comput. Methods Appl. Mech. Eng., Volume 200 (2011), pp. 2032-2047
Cited by Sources:
Comments - Policy