Comptes Rendus
Thermo-mechanical characterization of multi-walled carbon nanotube reinforced polycarbonate composites: A molecular dynamics approach
Comptes Rendus. Mécanique, Volume 343 (2015) no. 5-6, pp. 371-396.

The present study aims at examining the mechanical properties of multi-walled carbon nanotubes–polycarbonate composites (MWCNT–PC), through a molecular dynamics (MD) simulation. Composites of MWCNT–PC were modeled using Materials Studio 5.5 software. Multiwall carbon nanotubes (MWCNTs) compositions in polycarbonate (PC) were varied by weight from 0.5% to 10% and also by volume from 2% to 16%. Forcite module in Materials Studio was used for finding mechanical properties. A marked increase in the elastic modulus (up to 89%) has been observed, even with the addition of a small quantity (up to 2 weight %) of MWCNTs. Also, upon addition of about 2 volume % of MWCNTs, the elastic modulus increases by almost 10%. The increase in mechanical properties is found to supplement earlier experimental investigations of these composites using nano-indentation techniques. Better load transfer property of MWCNTs, larger surface area and interaction between reinforcement with base matrix are the suggested reasons for this increase in mechanical properties.

Published online:
DOI: 10.1016/j.crme.2015.03.002
Keywords: Carbon nanotube, Damping, Mechanical properties, Molecular dynamics, Polycarbonate, Thermal conductivity

Sumit Sharma 1; Rakesh Chandra 2; Pramod Kumar 2; Navin Kumar 3

1 School of Mechanical Engineering, Lovely Professional University, Phagwara, India
2 Department of Mechanical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India
3 School of Mechanical, Materials & Energy Engineering (SMMEE), Indian Institute of Technology, Ropar, India
     author = {Sumit Sharma and Rakesh Chandra and Pramod Kumar and Navin Kumar},
     title = {Thermo-mechanical characterization of multi-walled carbon nanotube reinforced polycarbonate composites: {A} molecular dynamics approach},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {371--396},
     publisher = {Elsevier},
     volume = {343},
     number = {5-6},
     year = {2015},
     doi = {10.1016/j.crme.2015.03.002},
     language = {en},
AU  - Sumit Sharma
AU  - Rakesh Chandra
AU  - Pramod Kumar
AU  - Navin Kumar
TI  - Thermo-mechanical characterization of multi-walled carbon nanotube reinforced polycarbonate composites: A molecular dynamics approach
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 371
EP  - 396
VL  - 343
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crme.2015.03.002
LA  - en
ID  - CRMECA_2015__343_5-6_371_0
ER  - 
%0 Journal Article
%A Sumit Sharma
%A Rakesh Chandra
%A Pramod Kumar
%A Navin Kumar
%T Thermo-mechanical characterization of multi-walled carbon nanotube reinforced polycarbonate composites: A molecular dynamics approach
%J Comptes Rendus. Mécanique
%D 2015
%P 371-396
%V 343
%N 5-6
%I Elsevier
%R 10.1016/j.crme.2015.03.002
%G en
%F CRMECA_2015__343_5-6_371_0
Sumit Sharma; Rakesh Chandra; Pramod Kumar; Navin Kumar. Thermo-mechanical characterization of multi-walled carbon nanotube reinforced polycarbonate composites: A molecular dynamics approach. Comptes Rendus. Mécanique, Volume 343 (2015) no. 5-6, pp. 371-396. doi : 10.1016/j.crme.2015.03.002.

[1] M.F. Yu; O. Lourie; M. Dyer; K. Moloni; T.F. Kelly; R.S. Ruoff Strength and breaking mechanism of multi walled carbon nanotubes under tensile load, Science, Volume 287 (2000) no. 5453, pp. 637-640

[2] W.S. Choi; R.S. Hun Improvement of interfacial interaction via ATRP in polycarbonate/carbon nanotube nanocomposites, Colloids Surf. A, Volume 375 (2011) no. 1–3, pp. 55-60

[3] S.P. Liu; S.S. Hwang; J.M. Yeh; K.W. Pan Enhancement of surface and bulk mechanical properties of polycarbonate through the incorporation of raw MWNTs-using the twin-screw extruder mixed technique, Int. Commun. Heat Mass Transf., Volume 37 (2010) no. 7, pp. 809-814

[4] M. Olek; K. Kempa; S. Jurga; M. Giersig Nanomechanical properties of silica-coated multiwall carbon nanotubes poly(methyl methacrylate) composites, Langmuir, Volume 21 (2005) no. 7, pp. 3146-3152

[5] B. Das; P.K. Eswar; U. Ramamurty; C.N.R. Rao Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene, Nanotechnology, Volume 20 (2009) no. 12, pp. 125705-125710

[6] S.R.C. Vivekchand; U. Ramamurty; C.N.R. Rao Mechanical properties of inorganic nanowire reinforced polymer–matrix composites, Nanotechnology, Volume 17 (2006) no. 11, p. S344-S350

[7] K.H. Kim; W.H. Jo A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites, Carbon, Volume 47 (2009) no. 4, pp. 1126-1134

[8] A. Eitan; F.T. Fisher; R. Andrews; L.C. Brinson; L.S. Schadler Reinforcement mechanisms in MWCNT-filled polycarbonate, Compos. Sci. Technol., Volume 66 (2006) no. 9, pp. 1162-1173

[9] M.R. Ayatollahi; S. Shadlou; M.M. Shokrieh Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions, Mater. Des., Volume 32 (2011) no. 4, pp. 2115-2124

[10] A. Montazeri; N. Montazeri Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content, Mater. Des., Volume 32 (2011) no. 4, pp. 2301-2307

[11] N. Kumar; P. Jindal; M. Goyal Mechanical characterization of multiwalled carbon nanotubes-polycarbonate composites, Mater. Des., Volume 54 (2014) no. 1, pp. 864-868

[12] P.K. Schelling; S.R. Phillpot; P. Keblinski Comparison of atomic-level simulation methods for computing thermal conductivity, Phys. Rev. B, Volume 65 (2002) no. 14, pp. 144306-144317

[13] M.S. Green Markov random processes and the statistical mechanics of time dependent phenomenon, J. Chem. Phys., Volume 20 (1952) no. 1, pp. 1281-1295

[14] R. Kubo Statistical–mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn., Volume 12 (1957), pp. 570-586

[15] S. Lepri; R. Livi; A. Politi Thermal conduction in classical low-dimensional lattices, Phys. Rep., Volume 377 (2003) no. 1, pp. 1-80

[16] P. Jund; R. Jullien Molecular dynamics calculation of the thermal conductivity of vitreous silica, Phys. Rev. B, Volume 59 (1999), pp. 13707-13711

[17] J.C. Halpin; J.L. Kardos The Halpin–Tsai equations: a review, Polym. Eng. Sci., Volume 16 (1976), pp. 344-352

[18] R.L. Hamilton; O.K. Crosser Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundam., Volume 1 (1962) no. 3, pp. 187-191

[19] A. Buldum; J.P. Lu Atomic scale sliding and rolling of carbon nanotubes, Phys. Rev. Lett., Volume 83 (1999), pp. 5050-5053

[20] J. Suhr; N. Koratkar; P. Keblinski; P. Ajayan Viscoelasticity in carbon nanotube composites, Nat. Mater., Volume 4 (2005), pp. 134-137

[21] R. Hill A self-consistent mechanics of composite materials, J. Mech. Phys. Solids, Volume 13 (1965), pp. 213-222

[22] J.J. Hermans The elastic properties of fiber reinforced materials when the fibers are aligned, Proc. K. Ned. Akad. Wet., Ser. B, Phys. Sci., Volume 65 (1967), pp. 1-9

[23] B. Khatua; N.K. Shrivastava; S. Maiti A strategy for achieving low percolation and high electrical conductivity in melt-blended polycarbonate (PC)/multiwall carbon–nanotube (MWCNT) nanocomposites: electrical and thermo-mechanical properties, eXPRESS Polym. Lett., Volume 7 (2013) no. 6, pp. 505-518

[24] G.P. Tandon; G.J. Weng The effect of aspect ratio of inclusions on the elastic properties of uni-directionally aligned composites, Polym. Compos., Volume 5 (1984), pp. 327-333

[25] P. Jindal; P. Shailaja; P. Sharma; V. Mangla; A. Chaudhury; D. Patel; B.P. Singh; R.B. Mathur; M. Goyal High strain rate behavior of multi-walled carbon nanotubes–polycarbonate composites, Composites, Part B, Eng., Volume 45 (2013) no. 1, pp. 417-422

[26] A.M.K. Esawi; M.M. Farag Carbon nanotube reinforced composites: potential and current challenges, Mater. Des., Volume 28 (2007) no. 9, pp. 2394-2401

Cited by Sources:

Comments - Policy