[Propriétés mécaniques des nanotubes de carbone : prédictions théoriques et résultats expérimentaux]
Les propriétés mécaniques des nanotubes de carbone sont discutées à la lumière des dernières avancées dans la modélisation et l'expérimentation.
Mechanical properties of carbon nanotubes are discussed based on recent advances in both modeling and experiment.
Rodney S. Ruoff 1 ; Dong Qian 2 ; Wing Kam Liu 1
@article{CRPHYS_2003__4_9_993_0, author = {Rodney S. Ruoff and Dong Qian and Wing Kam Liu}, title = {Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements}, journal = {Comptes Rendus. Physique}, pages = {993--1008}, publisher = {Elsevier}, volume = {4}, number = {9}, year = {2003}, doi = {10.1016/j.crhy.2003.08.001}, language = {en}, }
TY - JOUR AU - Rodney S. Ruoff AU - Dong Qian AU - Wing Kam Liu TI - Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements JO - Comptes Rendus. Physique PY - 2003 SP - 993 EP - 1008 VL - 4 IS - 9 PB - Elsevier DO - 10.1016/j.crhy.2003.08.001 LA - en ID - CRPHYS_2003__4_9_993_0 ER -
Rodney S. Ruoff; Dong Qian; Wing Kam Liu. Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. Comptes Rendus. Physique, Volume 4 (2003) no. 9, pp. 993-1008. doi : 10.1016/j.crhy.2003.08.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2003.08.001/
[1] Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites, Nature Materials, Volume 1 (2002), pp. 190-194
[2] Chemistry: The Central Science, Prentice-Hall, 1999
[3] Formation of general fullerenes by their projection on a honeycomb lattice, Phys. Rev. B, Volume 45 (1992) no. 23, pp. 13834-13836
[4] Physics of carbon nanotubes, Carbon, Volume 33 (1995) no. 7, pp. 883-891
[5] Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, 1996
[6] Fullerenes, J. Mater. Res., Volume 8 (1993), p. 2054
[7] Pentagons, heptagons and negative curvature in graphite microtubule growth, Nature, Volume 356 (1992) no. 6372, pp. 776-778
[8] Growth of carbon nanotubes, Mater. Sci. Engrg. B, Volume 19 (1993) no. 1–2, pp. 172-180
[9] Interlayer spacings in carbon nanotubes, Phys. Rev. B, Volume 48 (1993) no. 3, pp. 1907-1909
[10] Defects in carbon nanostructures, Science, Volume 263 (1994) no. 5154, pp. 1744-1747
[11] Size effects in carbon nanotubes, Phys. Rev. Lett., Volume 81 (1998) no. 9, pp. 1869-1872
[12] A structure model and growth-mechanism for multishell carbon nanotubes, Science, Volume 267 (1995) no. 5202, pp. 1334-1338
[13] Scrolls and nested tubes in multiwall carbon tubes, Carbon, Volume 40 (2001) no. 7, pp. 1123-1130
[14] Nanometre-size tubes of carbon, Rep. Progr. Phys., Volume 60 (1997) no. 10, pp. 1025-1062
[15] Conformational-analysis. 130. Mm2 – hydrocarbon force-field utilizing V1 and V2 torsional terms, J. Am. Chem. Soc., Volume 99 (1977) no. 25, pp. 8127-8134
[16] Molecular mechanics – the Mm3 force-field for hydrocarbons. 1, J. Am. Chem. Soc., Volume 111 (1989) no. 23, pp. 8551-8566
[17] Dreiding – a generic force-field for molecular simulations, J. Phys. Chem., Volume 94 (1990) no. 26, pp. 8897-8909
[18] Prediction of fullerene packing in C60 and C70 crystals, Nature, Volume 351 (1991) no. 6326, pp. 464-467
[19] Dynamics of fluid flow inside carbon nanotubes, Nanotechnology, Volume 7 (1996) no. 3, pp. 241-246
[20] Dynamics of He/C-60 flow inside carbon nanotubes, Nanotechnology, Volume 8 (1997) no. 3, pp. 112-118
[21] Empirical chemical pseudopotential theory of molecular and metallic bonding, Phys. Rev. B, Volume 31 (1985) no. 10, pp. 6184-6196
[22] New empirical-model for the structural-properties of silicon, Phys. Rev. Lett., Volume 56 (1986) no. 6, pp. 632-635
[23] New empirical-approach for the structure and energy of covalent systems, Phys. Rev. B, Volume 37 (1988) no. 12, pp. 6991-7000
[24] Empirical interatomic potential for carbon, with applications to amorphous-carbon, Phys. Rev. Lett., Volume 61 (1988) no. 25, pp. 2879-2882
[25] Modeling solid-state chemistry – interatomic potentials for multicomponent systems, Phys. Rev. B, Volume 39 (1989) no. 8, pp. 5566-5568
[26] Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films, Phys. Rev. B, Volume 42 (1990) no. 15, pp. 9458-9471
[27] Molecular-dynamics simulations of the nanometer-scale mechanical-properties of compressed buckminsterfullerene, Thin Solid Films, Volume 206 (1991) no. 1–2, pp. 220-223
[28] On the way to fullerenes – molecular-dynamics study of the curling and closure of graphitic ribbons, J. Phys. Chem., Volume 96 (1992) no. 15, pp. 6133-6135
[29] Energetics of nanoscale graphitic tubules, Phys. Rev. B, Volume 45 (1992) no. 21, pp. 12592-12595
[30] Temperature-dependent fusion of colliding C-60 fullerenes from molecular-dynamics simulations, J. Phys. Chem., Volume 99 (1995) no. 43, pp. 15721-15724
[31] Nanoscale investigation of indentation, adhesion and fracture of diamond (111) surfaces, Surface Sci., Volume 271 (1992) no. 1–2, pp. 57-67
[32] Molecular-dynamics simulations of atomic-scale friction of diamond surfaces, Phys. Rev. B, Volume 46 (1992) no. 15, pp. 9700-9708
[33] Effect of atomic-scale surface-roughness on friction – a molecular-dynamics study of diamond surfaces, Wear, Volume 168 (1993) no. 1–2, pp. 127-133
[34] Effects of chemically-bound, flexible hydrocarbon species on the frictional-properties of diamond surfaces, J. Phys. Chem., Volume 97 (1993) no. 25, pp. 6573-6576
[35] Atomistic simulations of friction at sliding diamond interfaces, Mrs Bulletin, Volume 18 (1993) no. 5, pp. 50-53
[36] Simulated tribochemistry – an atomic-scale view of the wear of diamond, J. Am. Chem. Soc., Volume 116 (1994) no. 23, pp. 10399-10402
[37] Investigation of the atomic-scale friction and energy-dissipation in diamond using molecular-dynamics, Thin Solid Films, Volume 260 (1995) no. 2, pp. 205-211
[38] Atomistic simulations of frictional wear in self-assembled monolayers, Abstr. Papers Am. Chem. Soc., Volume 206 (1993), p. 172-POLY
[39] Molecular-dynamics simulations of interfacial dynamics in self-assembled monolayers, Abstr. Papers Am. Chem. Soc., Volume 206 (1993), p. 72-COMP
[40] Molecular-dynamics simulations of friction in self-assembled monolayers, Thin Solid Films, Volume 253 (1994) no. 1–2, pp. 185-189
[41] D.W. Brenner, 2001, unpublished
[42] The art and science of an analytic potential, Phys. Status Solidi B, Volume 217 (2000) no. 1, pp. 23-40
[43] Analytic bond-order potentials beyond Tersoff–Brenner. II. Application to the hydrocarbons, Phys. Rev. B, Volume 59 (1999) no. 13, p. 8500
[44] Bounded analytic bond-order potentials for sigma and pi bonds, Phys. Rev. Lett., Volume 84 (2000) no. 18, pp. 4124-4127
[45] Energy of cohesion, compressibility and the potential energy functions of the graphite system, J. Chem. Phys., Volume 25 (1956) no. 4, pp. 693-697
[46] Molecular-properties of C-60 in the gas and solid-phases, J. Phys. Chem., Volume 96 (1992) no. 2, pp. 858-861
[47] Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential, Phys. Rev. B, Volume 62 (2000) no. 19, pp. 13104-13110
[48] Stiffness of a solid composed of C60 clusters, Phys. Rev. B, Volume 44 (1991) no. 12, pp. 6562-6565
[49] Mechanics of C60 in nanotubes, J. Phys. Chem. B, Volume 105 (2001), pp. 10753-10758
[50] Graphite under pressure – equation of state and 1st-order Raman modes, Phys. Rev. B, Volume 39 (1989) no. 17, pp. 12598-12603
[51] All-electron full-potential calculation of the electronic band structure, elastic constants, and equation of state for graphite, Phys. Rev. B, Volume 55 (1997) no. 17, pp. 11202-11211
[52] Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes, Phys. Rev. Lett., Volume 85 (2000) no. 22, pp. 4727-4730
[53] Locked twist in multi-walled carbon nanotube ribbons, Phys. Rev. B, Volume 64 (2001), p. 241403R
[54] Evaluation of Young's modulus of carbon nanotubes by micro-Raman spectroscopy, J. Mater. Res., Volume 13 (1998) no. 9, pp. 2418-2422
[55] Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett., Volume 84 (2000) no. 24, pp. 5552-5555
[56] Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, Volume 287 (2000) no. 5453, pp. 637-640
[57] Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, Volume 277 (1997) no. 5334, pp. 1971-1975
[58] Elastic modulus of ordered and disordered multiwalled carbon nanotubes, Adv. Mater., Volume 11 (1999) no. 2, pp. 161-165
[59] Elastic and shear moduli of single-walled carbon nanotube ropes, Phys. Rev. Lett., Volume 82 (1999) no. 5, pp. 944-947
[60] Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, Volume 381 (1996) no. 6584, pp. 678-680
[61] Young's modulus of single-walled nanotubes, Phys. Rev. B, Volume 58 (1998) no. 20, pp. 14013-14019
[62] Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, Volume 283 (1999) no. 5407, pp. 1513-1516
[63] Multiprobe nanomanipulation and functional assembly of nanomaterials inside a scanning electron microscope, International Conference IEEE-NANO2001, Maui, 2001
[64] Resonance vibration of amorphous SiO2 nanowires driven by mechanical or electrical field excitation, J. Appl. Phys., Volume 93 (2003), p. 226
[65] Structural rigidity and low-frequency vibrational-modes of long carbon tubules, Z. Phys. D, Volume 27 (1993) no. 1, pp. 93-96
[66] Why are carbon filaments tubular, J. Crystal Growth, Volume 66 (1984) no. 3, pp. 632-638
[67] Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes, Nanotechnology, Volume 9 (1998) no. 3, pp. 184-191
[68] Nanomechanics of carbon tubes: Instabilities beyond linear response, Phys. Rev. Lett., Volume 76 (1996) no. 14, pp. 2511-2514
[69] Theory of of Elastic Stability, McGraw-Hill, New York, 1988
[70] Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett., Volume 79 (1997) no. 7, pp. 1297-1300
[71] Young's modulus of single-walled carbon nanotubes, J. Appl. Phys., Volume 84 (1998) no. 4, pp. 1939-1943
[72] Elastic properties of C and BxCyNz composite nanotubes, Phys. Rev. Lett., Volume 80 (1998) no. 20, pp. 4502-4505
[73] Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory, Phys. Rev. B, Volume 62 (2000) no. 20, pp. 13692-13696
[74] On the use of continuum mechanics to estimate the properties of nanotubes, Solid State Commun., Volume 110 (1999) no. 4, pp. 227-230
[75] Mechanics of carbon nanotubes: applicability of the continuum-beam models, Comput. Mater. Sci., Volume 24 (2002) no. 3, pp. 328-342
[76] Ranges of applicability for the continuum-beam model in the mechanics of carbon-nanotubes and nanorods, Solid State Commun., Volume 120 (2001) no. 331–335
[77] Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube, J. Appl. Phys., Volume 87 (2000) no. 10, pp. 7227-7231
[78] Effective bending stiffness of carbon nanotubes, Phys. Rev. B, Volume 62 (2000) no. 15, pp. 9973-9976
[79] Column buckling of multiwalled carbon nanotubes with interlayer radial displacements, Phys. Rev. B, Volume 62 (2000) no. 24, pp. 16962-16967
[80] Degraded axial buckling strain of multiwalled carbon nanotubes due to interlayer slips, J. Appl. Phys., Volume 89 (2001) no. 6, pp. 3426-3433
[81] Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium, J. Mech. Phys. Solids, Volume 49 (2001) no. 6, pp. 1265-1279
[82] Elastic buckling of single-walled carbon nanotube ropes under high pressure, Phys. Rev. B, Volume 62 (2000) no. 15, pp. 10405-10408
[83] Nonlinear Finite Elements for Continua and Structures, Wiley, 2000
[84] Quasicontinuum analysis of defects in solids, Philos. Mag. A, Volume 73 (1996) no. 6, pp. 1529-1563
[85] Crystal elasticity (M.J. Sewell, ed.), Mechanics of Solids, Pergamon Press, Oxford, 1982
[86] Phase Transformations and Material Instabilities in Solids (M. Gurtin, ed.), Academic Press, New York, 1984
[87] Inner elasticity, J. Phys. C, Volume 11 (1978) no. 24, pp. 4867-4879
[88] Fracture nucleation in single-wall carbon nanotubes under tension: A continuum analysis incorporating interatomic potentials, J. Appl. Mech., Volume 69 (2002) no. 4, pp. 454-458
[89] The elastic modulus of single-wall carbon nanotubes: A continuum analysis incorporating interatomic potentials, Int. J. Solids Structures, Volume 39 (2002) no. 13–14, pp. 3893-3906
[90] An atomistic-based membrane for crystalline films one atom thick, J. Mech. Phys. Solids, Volume 50 (2002), pp. 1941-1977
[91] D. Qian, Effect of relaxation on the elastic properties of carbon nanotube, 2003, in preparation
[92] Fullerene nanotubes: C-1000000 and beyond, Am. Sci., Volume 85 (1997) no. 4, pp. 324-337
[93] Mechanical properties of carbon nanotubes, Carbon Nanotubes, 2001, pp. 287-327
[94] Theory of growth and mechanical properties of nanotubes, Appl. Phys. A, Volume 67 (1998) no. 1, pp. 39-46
[95] Bent and kinked multi-shell Carbon nanotubes-treating the interlayer potential more realistically, 43rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conferences, Denver, CO, 2002
[96] Effect of interlayer interaction on the mechanical deformation of multiwalled carbon nanotube, J. Nanosci. Nanotechnol., Volume 3 (2003) no. 1, pp. 185-191
[97] Flexibility of graphene layers in carbon nanotubes, Carbon, Volume 33 (1995) no. 1, pp. 87-89
[98] Structural flexibility of carbon nanotubes, J. Chem. Phys., Volume 104 (1996) no. 5, pp. 2089-2092
[99] Proc. Electrochem. Soc., 95–10 (1995), pp. 557-562
[100] Proc. Electrochem. Soc., 95–10 (1995), pp. 563-569
[101] Bending and buckling of carbon nanotubes under large strain, Nature, Volume 389 (1997) no. 6651, pp. 582-584
[102] Manipulation of individual carbon nanotubes and their interaction with surfaces, J. Phys. Chem. B, Volume 102 (1998) no. 6, pp. 910-915
[103] Buckling and collapse of embedded carbon nanotubes, Phys. Rev. Lett., Volume 81 (1998) no. 8, pp. 1638-1641
[104] Radial deformation of carbon nanotubes by Van-Der-Waals forces, Nature, Volume 364 (1993) no. 6437, pp. 514-516
[105] Structural-properties of a carbon-nanotube crystal, Phys. Rev. Lett., Volume 73 (1994) no. 5, pp. 676-679
[106] Novel polygonized single-wall carbon nanotube bundles, Phys. Rev. Lett., Volume 86 (2001) no. 14, pp. 3056-3059
[107] Fully collapsed carbon nanotubes, Nature, Volume 377 (1995) no. 6545, pp. 135-138
[108] Microscopic determination of the interlayer binding energy in graphite, Chem. Phys. Lett., Volume 286 (1998) no. 5–6, pp. 490-496
[109] Deformation of carbon nanotubes by surface van der Waals forces, Phys. Rev. B, Volume 58 (1998) no. 20, pp. 13870-13873
[110] Carbon nanotubes: nanomechanics, manipulation, and electronic devices, Appl. Surface Sci., Volume 141 (1999) no. 3–4, pp. 201-209
[111] Structure and mechanical flexibility of carbon nanotube ribbons: An atomic-force microscopy study, J. Appl. Phys., Volume 89 (2001) no. 8, pp. 4554-4557
[112] Structural analysis of collapsed, and twisted and collapsed, multiwalled carbon nanotubes by atomic force microscopy, Phys. Rev. Lett., Volume 86 (2001) no. 1, pp. 87-90
[113] Radial compression and controlled cutting of carbon nanotubes, J. Chem. Phys., Volume 109 (1998) no. 6, pp. 2509-2512
[114] Investigation of the radial compression of carbon nanotubes with a scanning probe microscope, Phys. Rev. Lett., Volume 84 (2000) no. 16, pp. 3634-3637
[115] Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force, Phys. Rev. Lett., Volume 85 (2000) no. 7, pp. 1456-1459
[116] Mechanical energy storage in carbon nanotube springs, Phys. Rev. Lett., Volume 82 (1999) no. 2, pp. 343-346
[117] Physics of Graphite, Applied Science, London, 1981
[118] Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure, Phys. Rev. Lett., Volume 85 (2000) no. 9, pp. 1887-1889
[119] Structure and property changes of single-walled carbon nanotubes under pressure, Synthetic Metals, Volume 121 (2001) no. 1–3, pp. 1245-1246
[120] Revealing properties of single-walled carbon nanotubes under high pressure, J. Phys. Condensed Matter., Volume 14 (2002) no. 44, pp. 10575-10578
[121] Helical microtubules of graphitic carbon, Nature, Volume 354 (1991) no. 6348, pp. 56-58
[122] Large-scale synthesis of carbon nanotubes, Nature, Volume 358 (1992) no. 6383, pp. 220-222
[123] Growth-model for carbon nanotubes, Phys. Rev. Lett., Volume 69 (1992) no. 21, pp. 3100-3103
[124] Crystalline ropes of metallic carbon nanotubes, Science, Volume 273 (1996) no. 5274, pp. 483-487
[125] Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett., Volume 243 (1995) no. 1–2, pp. 49-54
[126] Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature, Volume 395 (1998) no. 6705, pp. 878-881
[127] Large scale CVD synthesis of single-walled carbon nanotubes, J. Phys. Chem. B, Volume 103 (1999) no. 31, pp. 6484-6492
[128] Large-scale synthesis of aligned carbon nanotubes, Science, Volume 274 (1996) no. 5293, pp. 1701-1703
[129] Brittle and ductile behavior in carbon nanotubes, Phys. Rev. Lett., Volume 81 (1998) no. 21, pp. 4656-4659
[130] Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett., Volume 74 (1999) no. 25, pp. 3803-3805
[131] Tensile tests of ropes of very long aligned multiwall carbon nanotubes, Appl. Phys. Lett., Volume 74 (1999) no. 21, pp. 3152-3154
[132] Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Appl. Phys. Lett., Volume 72 (1998) no. 2, pp. 188-190
[133] Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes, Appl. Phys. Lett., Volume 77 (2000) no. 20, pp. 3161-3163
[134] High strain rate fracture and C-chain unraveling in carbon nanotubes, Comput. Mater. Sci., Volume 8 (1997) no. 4, pp. 341-348
[135] Atomistic simulation of nanotube fracture, Phys. Rev. B, Volume 65 (2002) no. 235430
[136] Mechanism of strain release in carbon nanotubes, Phys. Rev. B, Volume 57 (1998) no. 8, p. R4277-R4280
[137] Nanoplasticity of single-wall carbon nanotubes under uniaxial compression, Phys. Rev. Lett., Volume 83 (1999) no. 15, pp. 2973-2976
[138] Molecular dynamics study of temperature dependent plastic collapse of carbon nanotubes under axial compression, Comput. Modeling Engrg. Sci., Volume 3 (2002), p. 255
[139] Computational nanomechanics of carbon nanotubes and composites (submitted), ASME Appl. Mech. Rev. (2003)
[140] Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes, Appl. Phys. Lett., Volume 72 (1998) no. 8, pp. 918-920
[141] Plastic deformations of carbon nanotubes, Phys. Rev. Lett., Volume 81 (1998) no. 24, pp. 5346-5349
[142] Nucleation of carbon nanotubes without pentagonal rings, Phys. Rev. Lett., Volume 83 (1999) no. 9, pp. 1791-1794
[143] Dynamic topology and yield strength of carbon nanotubes, Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, Electrochemical Society, Pennington, NJ, 1997
[144] Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett., Volume 260 (1996) no. 3–4, pp. 471-475
[145] Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science, Volume 289 (2000) no. 5479, pp. 602-604
[146] Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes, J. Phys. Chem. B, Volume 104 (2000) no. 37, pp. 8764-8767
[147] Load transfer mechanism in carbon nanotube ropes, Composites Sci. Techn., Volume 63 (2003) no. 11, pp. 1561-1569
[148] Plasma deposition of ultrathin polymer films on carbon nanotubes, Appl. Phys. Lett., Volume 81 (2002) no. 27, pp. 5216-5218
Cité par Sources :
Commentaires - Politique