Comptes Rendus
Investigation of indentation-, impact- and scratch-induced mechanically affected zones in a copper single crystal
Comptes Rendus. Mécanique, Volume 343 (2015) no. 5-6, pp. 344-353.

Many nanomechanical testings and surface mechanical treatments—burnishing, shot peening...—are based upon contact phenomena such as indentation, impact and scratch loadings. In this paper, the Mechanically Affected Zone (MAZ) induced by these standard contact loadings applied on a single crystal copper is investigated. We assume that the MAZ can be characterized by the lattice misorientation measured using backscattering electron diffraction. With the help of a Finite-Element analysis, it is shown that crystal plasticity theory can estimate with enough accuracy the lattice misorientation pattern. Experimental results highlight that the MAZ size is always related to the residual imprint dimension and its shape depends strongly on the kind of loading.

Published online:
DOI: 10.1016/j.crme.2015.03.003
Keywords: Indentation, Scratch, Micro-impact, EBSD, Crystal plasticity, Finite-element analysis, Surface mechanical treatment, Lattice misorientation

Pierre Juran 1; Pierre-Jacques Liotier 1; Claire Maurice 1; Frédéric Valiorgue 2; Guillaume Kermouche 1

1 École des mines de Saint-Étienne, Centre SMS, Laboratoire LGF UMR CNRS 5307, 158, cours Fauriel, 42023 Saint-Étienne cedex 2, France
2 Université de Lyon, École nationale d'ingénieurs de Saint-Étienne, Laboratoire de tribologie et dynamique des systèmes, UMR 5513 CNRS/ECL/ENISE, 58 rue Jean-Parot, 42023 Saint-Étienne cedex 2, France
     author = {Pierre Juran and Pierre-Jacques Liotier and Claire Maurice and Fr\'ed\'eric Valiorgue and Guillaume Kermouche},
     title = {Investigation of indentation-, impact- and scratch-induced mechanically affected zones in a copper single crystal},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {344--353},
     publisher = {Elsevier},
     volume = {343},
     number = {5-6},
     year = {2015},
     doi = {10.1016/j.crme.2015.03.003},
     language = {en},
AU  - Pierre Juran
AU  - Pierre-Jacques Liotier
AU  - Claire Maurice
AU  - Frédéric Valiorgue
AU  - Guillaume Kermouche
TI  - Investigation of indentation-, impact- and scratch-induced mechanically affected zones in a copper single crystal
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 344
EP  - 353
VL  - 343
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crme.2015.03.003
LA  - en
ID  - CRMECA_2015__343_5-6_344_0
ER  - 
%0 Journal Article
%A Pierre Juran
%A Pierre-Jacques Liotier
%A Claire Maurice
%A Frédéric Valiorgue
%A Guillaume Kermouche
%T Investigation of indentation-, impact- and scratch-induced mechanically affected zones in a copper single crystal
%J Comptes Rendus. Mécanique
%D 2015
%P 344-353
%V 343
%N 5-6
%I Elsevier
%R 10.1016/j.crme.2015.03.003
%G en
%F CRMECA_2015__343_5-6_344_0
Pierre Juran; Pierre-Jacques Liotier; Claire Maurice; Frédéric Valiorgue; Guillaume Kermouche. Investigation of indentation-, impact- and scratch-induced mechanically affected zones in a copper single crystal. Comptes Rendus. Mécanique, Volume 343 (2015) no. 5-6, pp. 344-353. doi : 10.1016/j.crme.2015.03.003.

[1] W.-C. Oliver; G. Pharr An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., Volume 7 (1992), pp. 1564-1583

[2] M. Dao; N. Chollacoop; K.-J. Van Vliet; T.-A. Ventakesh; S. Suresh Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta Mater., Volume 49 (2001), pp. 3899-3918

[3] G. Kermouche; J.L. Loubet; J.M. Bergheau An approximate solution to the problem of cone or wedge indentation of elastoplastic solids, C. R. Mecanique, Volume 333 (2005) no. 5, pp. 389-395

[4] G. Kermouche; J.L. Loubet; J.M. Bergheau Extraction of stress–strain curves of elastic–viscoplastic solids using conical/pyramidal indentation testing with application to polymers, Mech. Mater., Volume 40 (2008), pp. 271-283

[5] C.H. Mok; J. Duffy The dynamic stress–strain relation of metals as determined from impact tests with a hard ball, Int. J. Mech. Sci., Volume 7 (1965), pp. 355-371

[6] G. Subhash; B.J. Koeppel; A. Chandra Dynamic indentation hardness and rate sensitivity in metals, J. Eng. Mater. Technol., Volume 121 (1999), pp. 257-263

[7] G. Kermouche; F. Grange; C. Langlade Local identification of the stress–strain curves of metals at a high strain rate using repeated micro-impact testing, Mater. Sci. Eng. A., Volume 569 (2013), pp. 71-77

[8] M.D. Uchic; D.M. Dimiduk A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing, Mater. Sci. Eng. A, Volume 400–401 (2005), pp. 268-278

[9] H. Zhang; B.E. Schuster; Q. Wei; K.T. Ramesh The design of accurate micro-compression experiments, Scr. Mater., Volume 54 (2006) no. 2, pp. 181-186

[10] R. Lacroix; G. Kermouche; J. Teisseire; E. Barthel Plastic deformation and residual stresses in amorphous silica pillars under uniaxial loading, Acta Mater. (2012), pp. 5555-5566

[11] J.L. Bucaille; E. Felder; G. Hochstetter Mechanical analysis of the scratch test on elastic and perfectly plastic materials with the three-dimensional finite element modelling, Wear, Volume 249 (2001), pp. 422-432

[12] M. Barge; G. Kermouche; P. Gilles; J.M. Bergheau Experimental and numerical study of the ploughing part of abrasive wear, Wear, Volume 255 (2003), pp. 30-37

[13] G. Kermouche; N. Aleksy; J.L. Loubet; J.M. Bergheau Finite element modeling of the scratch response of a coated time-dependent solid, Wear, Volume 267 (2009), pp. 1945-1953

[14] X. Hernot; C. Moussa; O. Bartier Study of the concept of representative strain and constraint factor introduced by Vickers indentation, Mech. Mater., Volume 68 (2014), pp. 1-14

[15] G. Kermouche; N. Aleksy; J.M. Bergheau Viscoelastic-viscoplastic modelling of the scratch response of pmma, Adv. Mater. Sci. Eng. A (2013), p. 289698

[16] C. Langlade; S. Lamri; G. Kermouche Damage phenomena of thin hard coatings submitted to repeated impacts: influence of the substrate and film properties, Mater. Sci. Eng. A., Volume 560 (2013), pp. 296-305

[17] A. Rodríguez; L.N. Lopez de Lacalle; A. Celaya; A. Lamikiz; J. Albizuri Surface improvement of shafts by the deep ball-burnishing technique, Surf. Coat. Technol., Volume 206 (2012), pp. 2817-2824

[18] S. Wang; Y. Li; M. Yao; R. Wang Compressive residual stress introduced by shot peening, J. Mater. Process. Technol., Volume 73 (1998), pp. 64-73

[19] G. Kermouche; J. Rech; H. Hamdi; J.M. Bergheau On the residual stress field induced by a scratching round abrasive grain, Wear, Volume 269 (2010), pp. 86-92

[20] K. Lu; J. Lu Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Mater. Sci. Eng. A, Volume 375–377 (2004), pp. 38-45

[21] M. Thomas; M. Jackson The role of temperature and alloy chemistry on subsurface deformation mechanisms during shot peening of titanium alloys, Scr. Mater., Volume 66 (2012), pp. 1065-1068

[22] M. Frija; T. Hassine; R. Fathallah; C. Bouraoui; A. Dogui Finite element modelling of shot peening process: prediction of the compressive residual stresses, the plastic deformations and the surface integrity, Mater. Sci. Eng. A, Volume 426 (2006), pp. 173-180

[23] G.H. Majzoobi; R. Azizi; A. Alavi Nia A three-dimensional simulation of shot peening process using multiple shot impacts, J. Mater. Process. Technol., Volume 164 (2005) no. 165, pp. 1226-1234

[24] P. Sanjurjo; C. Rodriguez; I. Penuelas; T.E. Garcia; F.J. Belzunce Influence of the target material constitutive model on the numerical simulation of a shot peening process, Surf. Coat. Technol. (2014), pp. 822-831

[25] H.Y. Miao; S. Larose; C. Perron; M. Levesque On the potential applications of a 3d random finite element model for the simulation of shot peening, Adv. Eng. Softw., Volume 40 (2009), pp. 1023-1038

[26] T. Kim; H. Lee; M. Kim; S. Jung A 3d fe model for evaluation of peening residual stress under angled multi-shot impacts, Surf. Coat. Technol. (2012), pp. 3981-3988

[27] M. Korzynski A model of smoothing slide ball-burnishing and an analysis of the parameter interaction, J. Mater. Process. Technol. (2009), pp. 625-633

[28] G. Kermouche Scratch-based residual stress-field by scratch-based surface mechanical treatments (superfinishing, polishing, roller burnishing (J.M. Bergheau, ed.), Modelisation and Simulation of Manufacturing Processes, Hermes, 2014, pp. 305-320

[29] P. Balland; L. Tabourot; F. Degre; V. Moreau An investigation of the mechanics of roller burnishing through finite element simulation and experiments, Int. J. Mach. Tools Manuf. (2013), pp. 29-36

[30] J. Rech; G. Kermouche; W. Grzesik; C. Garcia-Rosales; A. Khellouki; V. Garcia-Navas Characterization and modelling of the residual stresses induced by belt finishing on AISI D2 52100 hardened steel, J. Mater. Process. Technol., Volume 1 (2008) no. 3, pp. 187-195

[31] J. Kenda; G. Kermouche; F. Dumont; J. Rech; J. Kopac Investigation of the surface integrity induced by abrasive flow machining on AISI D2 hardened steel, Int. J. Mater. Prod. Technol., Volume 46 (2013), pp. 19-31

[32] P. Duranton; J. Devaux; V. Robin; P. Gilles; J.M. Bergheau 3d modelling of multipass welding of a 316l stainless steel pipe, J. Mater. Process. Technol., Volume 153 (2004) no. 154, pp. 457-463

[33] P. Heurtier; M.J. Jones; C. Desrayaud; J.H. Driver; F. Montheillet; D. Allehaux Mechanical and thermal modelling of friction stir welding, J. Mater. Process. Technol., Volume 171 (2006), pp. 348-357

[34] V.P. Kuznetsov; S.Y. Tarasov; A.I. Dmitriev Nanostructuring burnishing and subsurface shear instability, J. Mater. Process. Technol. (2015), pp. 327-335

[35] E. Sauger; L. Ponsonnet; J.M. Martin; L. Vincent Study of the tribologically transformed structure created during fretting tests, Tribol. Int., Volume 33 (2000), pp. 743-750

[36] A.C. Sekkal; C. Langlade; A.B. Vannes Tribologically transformed structure of titanium alloy (TiAl6V4) in surface fatigue induced by repeated impacts, Mater. Sci. Eng. A., Volume 393 (2005), pp. 140-146

[37] M. Busquet; S. Descartes; Y. Berthier Formation conditions of mechanically modified superficial structures for two steels, Tribol. Int., Volume 42 (2009), pp. 1730-1743

[38] G. Kermouche; G. Pacquaut; C. Langlade; J.M. Bergheau Investigation of mechanically attrited structures induced by repeated impacts on an AISI 1045 steel, C. R. Mecanique, Volume 339 (2011), pp. 552-562

[39] E. Demir; D. Raabe; N. Zaafarani; S. Zaefferer Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths suing EBSD tomography, Acta Mater., Volume 57 (2009), pp. 559-569

[40] B. Devincre; L. Kubin; T. Hoc Physical analyses of crystal plasticity by dd simulation, Scr. Mater., Volume 54 (2006), pp. 741-746

[41] L. Kubin; B. Devincre; T. Hoc Modeling dislocation storage rates and mean free paths in face-centered cubic crystals, Acta Mater., Volume 56 (2008), pp. 6040-6049

[42] L. Kubin; T. Hoc; B. Devincre Dynamic recovery and its orientation dependence in face-centered cubic crystals, Acta Mater., Volume 57 (2009), pp. 2567-2575

[43] Y. Liu; S. Varghese; J. Ma; M. Yoshino; H. Lu; R. Komanduri Orientation effects in nanoindentation of single crystal copper, Int. J. Plast., Volume 24 (2008), pp. 1990-2015

[44] O. Casals; S. Forest Finite element crystal plasticity analysis of spherical indentation in bulk single crystals and coatings, Comput. Mater. Sci., Volume 45 (2009), pp. 774-782

[45] J. Alcala; D. Esque-de los Ojos Extending the contact regimes to single-crystal indentations, C. R. Mecanique, Volume 339 (2011), pp. 458-465

[46] J. Alcala; D. Esque-de los Ojos Toward the development of continuum single-crystal contact mechanics analyses to microindentation experiments, Comput. Mater. Sci., Volume 52 (2012), pp. 14-19

[47] Y. Liu; A.H.W. Ngan Depth dependence of hardness in copper single crystals measured by nanoindentation, Scr. Mater., Volume 44 (2001), pp. 337-341

[48] Simulia Abaqus explicit user's manual, Dassault Systèmes (2013)

[49] H.J. Chang; M. Fivel; D. Rodney; M. Verdier Multiscale modelling of indentation in fcc metals: from atomic to continuum, C. R. Phys. (2010), pp. 285-292

[50] P. Franciosi; M. Berveiller; A. Zaoui Latent hardening in copper and aluminium single crystals, Acta Metall., Volume 28 (1980) no. 3, pp. 273-283

[51] R. Madec; B. Devincre; L. Kubin; T. Hoc; D. Rodney The role of collinear interaction in dislocation-induced hardening, Science (2003), pp. 1879-1882

[52] J. Alcala; O. Casals; J. Ocenasek Micromechanics of pyramidal indentation in fcc metals: single crystal plasticity finite element analysis, J. Mech. Phys. Solids, Volume 56 (2008), pp. 3277-3303

[53] T. Belytschko; W. Kam Liu; B. Moran Non-linear Finite Elements for Continua and Structures, Wiley, 2000

[54] T. Hoc; J. Crépin; L. Gelebart; A. Zaoui A procedure for identifying the plastic behavior of single crystals from the local response of polycrystals, Acta Mater. (2003), pp. 5477-5488

[55] C. Maurice; J. Driver; R. Fortunier On solving the orientation gradient dependency of high angular resolution EBSD, Ultramicroscopy, Volume 113 (2012), pp. 171-181

Cited by Sources:

Comments - Policy