Comptes Rendus
A new method to determine the true projected contact area using nanoindentation testing
[Une nouvelle méthode pour déterminer l'aire de contact projetée réelle par nano-indentation]
Comptes Rendus. Mécanique, Volume 343 (2015) no. 7-8, pp. 410-418.

Une nouvelle technique de mesure de l'aire de contact projetée par nano-indentation est présentée. Elle requiert la combinaison de deux modèles habituellement utilisés pour la détermination des contraintes et déformations représentatives à partir des paramètres mesurés en nano-indentation. Les modèles utilisés habituellement pour calculer l'aire de contact projetée ne sont donc pas utilisés. Cette nouvelle méthode nécessite d'effectuer les tests d'indentation sur le même échantillon en utilisant deux indenteurs de géométrie différente (pointe Berkovich et pointe tétraédrale, dont le demi-angle au sommet est de 50°). La méthode a été appliquée sur trois échantillons : verre, PMMA et acier 100C6. L'aire de contact projetée obtenue avec ce modèle a été mesurée de façon précise pour tous les échantillons.

A new technique to determine the true projected contact area by nanoindentation is presented. It requires combining two models used normally to determine the representative stress and strain from nanoindentation parameters. Consequently, it does not require any model classically used to calculate the projected contact area. The method requires performing indentation on the same sample with two indenter tips with different geometries (Berkovich tip and a tetrahedral tip with a semi-angle equal to 50°). The method was applied to three samples: glass, PMMA, and 100C6 steel. The projected contact area obtained by this model was accurate in all cases.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2015.06.004
Keywords: Nanoindentation, Projected contact area, Model, Representative stress, Hardness, Modulus of elasticity
Mot clés : Nanoindentation, Aire de contact projetée, Modèle, Contrainte représentative, Dureté, Module d'élasticité

Gaylord Guillonneau 1, 2 ; Guillaume Kermouche 3 ; Jean-Michel Bergheau 4 ; Jean-Luc Loubet 2

1 EMPA, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
2 École centrale de Lyon, Laboratoire de tribologie et dynamique des systèmes, UMR 5513 CNRS/ECL/ENISE, 36, avenue Guy-de-Collongue, 69134 Écully, France
3 École des mines de Saint-Étienne, Centre SMS, Laboratoire LGF UMR5307, 158, cours Fauriel, 42023 Saint-Étienne, France
4 Université de Lyon, ENISE, LTDS, UMR 5513 CNRS, 58, rue Jean-Parot, 42023 Saint-Étienne cedex 2, France
@article{CRMECA_2015__343_7-8_410_0,
     author = {Gaylord Guillonneau and Guillaume Kermouche and Jean-Michel Bergheau and Jean-Luc Loubet},
     title = {A new method to determine the true projected contact area using nanoindentation testing},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {410--418},
     publisher = {Elsevier},
     volume = {343},
     number = {7-8},
     year = {2015},
     doi = {10.1016/j.crme.2015.06.004},
     language = {en},
}
TY  - JOUR
AU  - Gaylord Guillonneau
AU  - Guillaume Kermouche
AU  - Jean-Michel Bergheau
AU  - Jean-Luc Loubet
TI  - A new method to determine the true projected contact area using nanoindentation testing
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 410
EP  - 418
VL  - 343
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crme.2015.06.004
LA  - en
ID  - CRMECA_2015__343_7-8_410_0
ER  - 
%0 Journal Article
%A Gaylord Guillonneau
%A Guillaume Kermouche
%A Jean-Michel Bergheau
%A Jean-Luc Loubet
%T A new method to determine the true projected contact area using nanoindentation testing
%J Comptes Rendus. Mécanique
%D 2015
%P 410-418
%V 343
%N 7-8
%I Elsevier
%R 10.1016/j.crme.2015.06.004
%G en
%F CRMECA_2015__343_7-8_410_0
Gaylord Guillonneau; Guillaume Kermouche; Jean-Michel Bergheau; Jean-Luc Loubet. A new method to determine the true projected contact area using nanoindentation testing. Comptes Rendus. Mécanique, Volume 343 (2015) no. 7-8, pp. 410-418. doi : 10.1016/j.crme.2015.06.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.06.004/

[1] D. Tabor The hardness of solids, Rev. Phys. Technol., Volume 1 (1970), pp. 145-179

[2] S.I. Bulychev; V.P. Alekhin; M.K. Shorshorov; A.P. Ternovskii; G.D. Shnyrev Determining Young modulus from the indenter penetration diagram, Ind. Lab. USSR Engl. Transl. Zavod. Lab., Volume 41 (1975), pp. 1409-1412

[3] W.C. Oliver; G.M. Pharr An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res., Volume 7 (1992), pp. 1564-1583

[4] S.A.S. Asif; K.J. Wahl; R.J. Colton Nanoindentation and contact stiffness measurement using force modulation with a capacitive load–displacement transducer, Rev. Sci. Instrum., Volume 70 (1999), pp. 2408-2413

[5] J.-L. Loubet; M. Bauer; A. Tonck; S. Bec; B. Gauthier-Manuel Nano-indentation with a surface force apparatus, NATO Adv. Study Inst. Ser. E (1993), pp. 429-447

[6] J. Thurn; R.F. Cook Simplified area function for sharp indenter tips in depth-sensing indentation, J. Mater. Res., Volume 17 (2002), pp. 1143-1146

[7] M. Troyon; L. Huang Comparison of different analysis methods in nanoindentation and influence on the correction factor for contact area, Surf. Coat. Technol., Volume 201 (2006), pp. 1613-1619

[8] H. Bei; E.P. George; J.L. Hay; G.M. Pharr Influence of indenter tip geometry on elastic deformation during nanoindentation, Phys. Rev. Lett., Volume 95 (2005)

[9] J.M. Antunes; A. Cavaleiro; L.F. Menezes; M.I. Simões; J.V. Fernandes Ultra-microhardness testing procedure with Vickers indenter, Surf. Coat. Technol., Volume 149 (2002), pp. 27-35

[10] D. Chicot; M. Yetna N'Jock; E.S. Puchi-Cabrera; A. Iost; M.H. Staia; G. Louis et al. A contact area function for Berkovich nanoindentation: application to hardness determination of a TiHfCN thin film, Thin Solid Films, Volume 558 (2014), pp. 259-266

[11] W.C. Oliver; G.M. Pharr Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res., Volume 19 (2004), pp. 3-20

[12] A. Bolshakov; G.M. Pharr Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, J. Mater. Res., Volume 13 (1998), pp. 1049-1058

[13] G. Hochstetter; A. Jimenez; J.-L. Loubet Strain-rate effects on hardness of glassy polymers in the nanoscale range. Comparison between quasi-static and continuous stiffness measurements, J. Macromol. Sci. Part B Phys., Volume 38 (1999), p. 681

[14] J.R. Tuck; A.M. Korsunsky; S.J. Bull; R.I. Davidson On the application of the work-of-indentation approach to depth-sensing indentation experiments in coated systems, Surf. Coat. Technol., Volume 137 (2001), pp. 217-224

[15] D. Beegan; S. Chowdhury; M.T. Laugier Work of indentation methods for determining copper film hardness, Surf. Coat. Technol., Volume 192 (2005), pp. 57-63

[16] M. Cabibbo; P. Ricci True hardness evaluation of bulk metallic materials in the presence of pile up: analytical and enhanced lobes method approaches, Metall. Mater. Trans. A, Volume 44 (2013), pp. 531-543

[17] K.W. McElhaney; J.J. Vlassak; W.D. Nix Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J. Mater. Res., Volume 13 (1998), pp. 1300-1306

[18] D. Beegan; S. Chowdhury; M.T. Laugier The nanoindentation behaviour of hard and soft films on silicon substrates, Thin Solid Films, Volume 466 (2004), pp. 167-174

[19] L. Charleux; V. Keryvin; M. Nivard; J.-P. Guin; J.-C. Sanglebœuf; Y. Yokoyama A method for measuring the contact area in instrumented indentation testing by tip scanning probe microscopy imaging, Acta Mater., Volume 70 (2014), pp. 249-258

[20] K.L. Johnson The correlation of indentation experiments, J. Mech. Phys. Solids, Volume 18 (1970), pp. 115-126

[21] N. Chollacoop; M. Dao; S. Suresh Depth-sensing instrumented indentation with dual sharp indenters, Acta Mater., Volume 51 (2003), pp. 3713-3729

[22] M. Dao; N. Chollacoop; K.J. Van Vliet; T.A. Venkatesh; S. Suresh Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta Mater., Volume 49 (2001), pp. 3899-3918

[23] J.-L. Bucaille; E. Felder; G. Hochstetter Identification of the viscoplastic behavior of a polycarbonate based on experiments and numerical modeling of the nano-indentation test, J. Mater. Sci., Volume 37 (2002), pp. 3999-4011

[24] J.-L. Bucaille; S. Stauss; E. Felder; J. Michler Determination of plastic properties of metals by instrumented indentation using different sharp indenters, Acta Mater., Volume 51 (2003), pp. 1663-1678

[25] Y.-T. Cheng; C.-M. Cheng Scaling, dimensional analysis, and indentation measurements, Mater. Sci. Eng. R Rep., Volume 44 (2004), pp. 91-149

[26] A. Constantinescu; N. Tardieu On the identification of elastoviscoplastic constitutive laws from indentation tests, Inverse Probl. Eng., Volume 9 (2001), pp. 19-44

[27] X. Hernot; C. Moussa; O. Bartier Study of the concept of representative strain and constraint factor introduced by Vickers indentation, Mech. Mater., Volume 68 (2014), pp. 1-14

[28] G. Kermouche; J.-L. Loubet; J.-M. Bergheau An approximate solution to the problem of cone or wedge indentation of elastoplastic solids, C. R. Mecanique, Volume 333 (2005), pp. 389-395

[29] G. Kermouche; J.-L. Loubet; J.-M. Bergheau Extraction of stress–strain curves of elastic–viscoplastic solids using conical/pyramidal indentation testing with application to polymers, Mech. Mater., Volume 40 (2008), pp. 271-283

[30] G. Guillonneau; G. Kermouche; S. Bec; J.-L. Loubet Extraction of mechanical properties with second harmonic detection for dynamic nanoindentation testing, Exp. Mech., Volume 52 (2012), pp. 933-944

[31] B.N. Lucas; W.C. Oliver; G.M. Pharr; J.-L. Loubet Time dependent deformation during indentation testing, April 8 1996 – April 12 1996, San Francisco, CA, USA (1996), pp. 233-238

[32] G. Kermouche; J.-L. Loubet; J.-M. Bergheau Cone indentation of time-dependent materials: the effects of the indentation strain rate, Mech. Mater., Volume 39 (2007), pp. 24-38

[33] G.M. Pharr; J.H. Strader; W.C. Oliver Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement, J. Mater. Res., Volume 24 (2009), pp. 653-666

[34] M.Y. N'jock; D. Chicot; J.M. Ndjaka; J. Lesage; X. Decoopman; F. Roudet et al. A criterion to identify sinking-in and piling-up in indentation of materials, Int. J. Mech. Sci., Volume 90 (2015), pp. 145-150

Cité par Sources :

Commentaires - Politique