Comptes Rendus
Torsional topology and fermion-like behavior of elastic waves in phononic structures
Comptes Rendus. Mécanique, Volume 343 (2015) no. 12, pp. 700-711.

A one-dimensional block-spring model that supports rotational waves is analyzed within Dirac formalism. We show that the wave functions possess a spinor and a spatio-temporal part. The spinor part leads to a non-conventional torsional topology of the wave function. In the long-wavelength limit, field theoretical methods are used to demonstrate that rotational phonons can exhibit fermion-like behavior. Subsequently, we illustrate how information can be encoded in the spinor-part of the wave function by controlling the phonon wave phase.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2015.07.003
Keywords: Phonons, Fermions, Topological elastic waves, Phononic structure

Pierre A. Deymier 1; Keith Runge 1; Nick Swinteck 1; Krishna Muralidharan 1

1 Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721, USA
@article{CRMECA_2015__343_12_700_0,
     author = {Pierre A. Deymier and Keith Runge and Nick Swinteck and Krishna Muralidharan},
     title = {Torsional topology and fermion-like behavior of elastic waves in phononic structures},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {700--711},
     publisher = {Elsevier},
     volume = {343},
     number = {12},
     year = {2015},
     doi = {10.1016/j.crme.2015.07.003},
     language = {en},
}
TY  - JOUR
AU  - Pierre A. Deymier
AU  - Keith Runge
AU  - Nick Swinteck
AU  - Krishna Muralidharan
TI  - Torsional topology and fermion-like behavior of elastic waves in phononic structures
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 700
EP  - 711
VL  - 343
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2015.07.003
LA  - en
ID  - CRMECA_2015__343_12_700_0
ER  - 
%0 Journal Article
%A Pierre A. Deymier
%A Keith Runge
%A Nick Swinteck
%A Krishna Muralidharan
%T Torsional topology and fermion-like behavior of elastic waves in phononic structures
%J Comptes Rendus. Mécanique
%D 2015
%P 700-711
%V 343
%N 12
%I Elsevier
%R 10.1016/j.crme.2015.07.003
%G en
%F CRMECA_2015__343_12_700_0
Pierre A. Deymier; Keith Runge; Nick Swinteck; Krishna Muralidharan. Torsional topology and fermion-like behavior of elastic waves in phononic structures. Comptes Rendus. Mécanique, Volume 343 (2015) no. 12, pp. 700-711. doi : 10.1016/j.crme.2015.07.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.07.003/

[1] Acoustic Metamaterials and Phononic Crystals (P.A. Deymier, ed.), Springer Series in Solid State Sciences, vol. 173, Springer, Heidelberg, Germany, 2013

[2] M.Z. Hasan; C.L. Kane Colloquium: topological insulators, Rev. Mod. Phys., Volume 82 (2010), p. 3045

[3] A.B. Khanikaev; S.H. Mousavi; W.-K. Tse; M. Kargarian; A.H. MacDonald; G. Shvets Photonic topological insulators, Nat. Mater., Volume 12 (2013), p. 233

[4] M.C. Rechtsman; J.M. Zeuner; Y. Plotnik; Y. Lumer; D. Podolsky; F. Dreisow; S. Nolte; M. Sergev; A. Szameit Photonic Floquet topological insulators, Nature, Volume 496 (2013), p. 196

[5] E. Prodan; C. Prodan Topological phonon modes and their role in dynamic instability of microtubules, Phys. Rev. Lett., Volume 103 (2009), p. 248101

[6] C.L. Kane; T.C. Lubensky Topological boundary modes in isostatic lattices, Nat. Phys., Volume 10 (2014), p. 39

[7] P.A. Deymier; K. Runge; N. Swinteck; K. Muralidharan Rotational modes in a phononic crystal with fermion-like behavior, J. Appl. Phys., Volume 115 (2014), p. 163510

[8] Z. Wang; Y. Chong; J.D. Joannopoulos; M. Soljacic Observation of unidirectional backscattering-immune topological electromagnetic states, Nature, Volume 461 (2009), p. 772

[9] N. Swinteck; S. Matsuo; K. Runge; J.O. Vasseur; P. Lucas; P.A. Deymier Sound with a twist: bulk elastic waves with unidirectional backscattering-immune topological states, J. Appl. Phys. (2015) (submitted for publication)

[10] P. Peng; J. Mei; Y. Wu A lumped model for rotational modes in phononic crystals, Phys. Rev. B, Volume 86 (2012), p. 134304

[11] A. Vasiliev; A. Miroshnichenko; M. Ruzzene A discrete model and analysis of one-dimensional deformations in a structural interface with micro-rotations, Mech. Res. Commun., Volume 37 (2010), pp. 225-229

[12] A. Vasiliev; A. Miroshnichenko; M. Ruzzene Multifield model for Cosserat media, J. Mech. Mater., Volume 3 (2008), pp. 1365-1382

[13] E. Rubino; J. McLenaghan; S.C. Kehr; F. Belgiorno; D. Townsend; S. Rohr; C.E. Kuklewicz; U. Leonhardt; F. Konig; D. Faccio Negative-frequency resonant radiation, Phys. Rev. Lett., Volume 108 (2012), p. 253901

[14] L. Dobrzynski Interface response theory of composite systems, Surf. Sci., Volume 200 (1988), p. 435

[15] J. Gump; I. Finckler; H. Xia; R. Sooryakumar; W.J. Bresser; P. Boolchand Light-induced giant softening of network glasses observed near the mean-field rigidity transition, Phys. Rev. Lett., Volume 92 (2004), p. 245501

[16] O. Bou Matar; J.F. Robillard; J.O. Vasseur; A.-C. Hladky-Hennion; P.A. Deymier; P. Pernod; V. Preobrazhensky Band gap tunability of magneto-elastic phononic crystal, J. Appl. Phys., Volume 111 (2012), p. 054901

Cited by Sources:

Comments - Policy