A one-dimensional block-spring model that supports rotational waves is analyzed within Dirac formalism. We show that the wave functions possess a spinor and a spatio-temporal part. The spinor part leads to a non-conventional torsional topology of the wave function. In the long-wavelength limit, field theoretical methods are used to demonstrate that rotational phonons can exhibit fermion-like behavior. Subsequently, we illustrate how information can be encoded in the spinor-part of the wave function by controlling the phonon wave phase.
Accepted:
Published online:
Pierre A. Deymier 1; Keith Runge 1; Nick Swinteck 1; Krishna Muralidharan 1
@article{CRMECA_2015__343_12_700_0, author = {Pierre A. Deymier and Keith Runge and Nick Swinteck and Krishna Muralidharan}, title = {Torsional topology and fermion-like behavior of elastic waves in phononic structures}, journal = {Comptes Rendus. M\'ecanique}, pages = {700--711}, publisher = {Elsevier}, volume = {343}, number = {12}, year = {2015}, doi = {10.1016/j.crme.2015.07.003}, language = {en}, }
TY - JOUR AU - Pierre A. Deymier AU - Keith Runge AU - Nick Swinteck AU - Krishna Muralidharan TI - Torsional topology and fermion-like behavior of elastic waves in phononic structures JO - Comptes Rendus. Mécanique PY - 2015 SP - 700 EP - 711 VL - 343 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2015.07.003 LA - en ID - CRMECA_2015__343_12_700_0 ER -
%0 Journal Article %A Pierre A. Deymier %A Keith Runge %A Nick Swinteck %A Krishna Muralidharan %T Torsional topology and fermion-like behavior of elastic waves in phononic structures %J Comptes Rendus. Mécanique %D 2015 %P 700-711 %V 343 %N 12 %I Elsevier %R 10.1016/j.crme.2015.07.003 %G en %F CRMECA_2015__343_12_700_0
Pierre A. Deymier; Keith Runge; Nick Swinteck; Krishna Muralidharan. Torsional topology and fermion-like behavior of elastic waves in phononic structures. Comptes Rendus. Mécanique, Acoustic metamaterials and phononic crystals, Volume 343 (2015) no. 12, pp. 700-711. doi : 10.1016/j.crme.2015.07.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.07.003/
[1] Acoustic Metamaterials and Phononic Crystals (P.A. Deymier, ed.), Springer Series in Solid State Sciences, vol. 173, Springer, Heidelberg, Germany, 2013
[2] Colloquium: topological insulators, Rev. Mod. Phys., Volume 82 (2010), p. 3045
[3] Photonic topological insulators, Nat. Mater., Volume 12 (2013), p. 233
[4] Photonic Floquet topological insulators, Nature, Volume 496 (2013), p. 196
[5] Topological phonon modes and their role in dynamic instability of microtubules, Phys. Rev. Lett., Volume 103 (2009), p. 248101
[6] Topological boundary modes in isostatic lattices, Nat. Phys., Volume 10 (2014), p. 39
[7] Rotational modes in a phononic crystal with fermion-like behavior, J. Appl. Phys., Volume 115 (2014), p. 163510
[8] Observation of unidirectional backscattering-immune topological electromagnetic states, Nature, Volume 461 (2009), p. 772
[9] Sound with a twist: bulk elastic waves with unidirectional backscattering-immune topological states, J. Appl. Phys. (2015) (submitted for publication)
[10] A lumped model for rotational modes in phononic crystals, Phys. Rev. B, Volume 86 (2012), p. 134304
[11] A discrete model and analysis of one-dimensional deformations in a structural interface with micro-rotations, Mech. Res. Commun., Volume 37 (2010), pp. 225-229
[12] Multifield model for Cosserat media, J. Mech. Mater., Volume 3 (2008), pp. 1365-1382
[13] Negative-frequency resonant radiation, Phys. Rev. Lett., Volume 108 (2012), p. 253901
[14] Interface response theory of composite systems, Surf. Sci., Volume 200 (1988), p. 435
[15] Light-induced giant softening of network glasses observed near the mean-field rigidity transition, Phys. Rev. Lett., Volume 92 (2004), p. 245501
[16] Band gap tunability of magneto-elastic phononic crystal, J. Appl. Phys., Volume 111 (2012), p. 054901
Cited by Sources:
Comments - Policy