The feasibility of using the band structure of a crystal to realize directional emission of water waves is investigated numerically and experimentally. The directionality of a source inside a square array of cylinders is obtained numerically for a perfect lattice in a lossless liquid. But in the experiments, the directivity is weakened, due to the effects of losses. Nevertheless, the waves are shown to satisfy the Helmholtz equation when proper attenuation is accounted for. Thus, the robustness of the directionality is studied numerically with respect to the effects of the attenuation and of the disorder.
On étudie la faisabilité d'une source directive pour les ondes à la surface de l'eau, basée sur les propriétés de la structure de bandes d'un cristal. Cette directivité est caractérisée numériquement pour un réseau périodique de cylindres rigides dans un fluide parfait. Dans l'expérience, la directivité est affaiblie, à cause de l'atténuation. Cependant, en prenant en compte cette atténuation, la propagation des ondes est toujours correctement décrite par l'équation de Helmholtz. Aussi, la robustesse de la directivité est-elle étudiée numériquement plus en détail, vis-à-vis des effets d'atténuation et de désordre.
Accepted:
Published online:
Mots-clés : Metamatériau, Cristal périodique
Mathieu Chekroun 1; Agnès Maurel 2; Vincent Pagneux 1; P. Petitjeans 3
@article{CRMECA_2015__343_12_689_0, author = {Mathieu Chekroun and Agn\`es Maurel and Vincent Pagneux and P. Petitjeans}, title = {Directional source of water waves by a crystal of surface-piercing cylinders}, journal = {Comptes Rendus. M\'ecanique}, pages = {689--699}, publisher = {Elsevier}, volume = {343}, number = {12}, year = {2015}, doi = {10.1016/j.crme.2015.06.005}, language = {en}, }
TY - JOUR AU - Mathieu Chekroun AU - Agnès Maurel AU - Vincent Pagneux AU - P. Petitjeans TI - Directional source of water waves by a crystal of surface-piercing cylinders JO - Comptes Rendus. Mécanique PY - 2015 SP - 689 EP - 699 VL - 343 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2015.06.005 LA - en ID - CRMECA_2015__343_12_689_0 ER -
%0 Journal Article %A Mathieu Chekroun %A Agnès Maurel %A Vincent Pagneux %A P. Petitjeans %T Directional source of water waves by a crystal of surface-piercing cylinders %J Comptes Rendus. Mécanique %D 2015 %P 689-699 %V 343 %N 12 %I Elsevier %R 10.1016/j.crme.2015.06.005 %G en %F CRMECA_2015__343_12_689_0
Mathieu Chekroun; Agnès Maurel; Vincent Pagneux; P. Petitjeans. Directional source of water waves by a crystal of surface-piercing cylinders. Comptes Rendus. Mécanique, Acoustic metamaterials and phononic crystals, Volume 343 (2015) no. 12, pp. 689-699. doi : 10.1016/j.crme.2015.06.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.06.005/
[1] Photonic Band Gap Materials (C.M. Soukoulis, ed.), Kluwer Academic, Dordrecht, The Netherlands, 1996
[2] Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, USA, 2011
[3] Acoustic Metamaterials and Phononic Crystals (P.A. Deymier, ed.), vol. 173, Springer, 2013
[4] Highly directive radiation from sources embedded inside photonic crystals, Appl. Phys. Lett., Volume 83 (2003) no. 16, pp. 3263-3265
[5] Off-axis directional beaming via photonic crystal surface modes, Appl. Phys. Lett., Volume 92 (2008) no. 9, p. 092114
[6] Acoustic directional radiation and enhancement caused by band edge states of two dimensional phononic crystals, Appl. Phys. Lett., Volume 89 (2006), p. 063106
[7] Experimental demonstration of directional acoustic radiation based on two dimensional photonic crystal band edge states, Appl. Phys. Lett., Volume 90 (2007), p. 083509
[8] Collimation and enhancement of elastic transverse waves in two-dimensional solid phononic crystals, Phys. Lett. A, Volume 374 (2010), p. 2968
[9] Ultra-directional source of longitudinal acoustic waves based on a two-dimensional solid/solid phononic crystal, J. Appl. Phys., Volume 116 (2014) no. 21, p. 214901
[10] Parametric Bragg resonances in waves on a shallow fluid over a periodically drilled bottom, Phys. Rev. E, Volume 63 (2000) no. 1, p. 011204
[11] Self-collimation in liquid surface waves propagating over a bottom with periodically drilled holes, Phys. Rev. E, Volume 71 (2005) no. 3, p. 036301
[12] The Feynman Lectures on Physics, vol. I, Addison–Wesley, Reading, MA, USA, 1963 (Chaps. 51–54)
[13] Enhanced and directional water wave emission by embedded sources, Wave Motion, Volume 47 (2010) no. 3, pp. 131-138
[14] Different regimes for water wave turbulence, Phys. Rev. Lett., Volume 107 (2011) no. 21, p. 214503
[15] Time reversal of water waves, Phys. Rev. Lett., Volume 109 (2012) no. 6, p. 064501
[16] Experimental realization of a water-wave metamaterial shifter, Phys. Rev. E, Volume 88 (2013) no. 5, p. 051002
[17] Surface-wave damping in a circular cylinder with a fixed contact line, J. Fluid Mech., Volume 275 (1994), pp. 285-299
[18] Contact-line dynamics and damping for oscillating free surface flows, Phys. Fluids, Volume 16 (2004) no. 3, pp. 748-758
[19] Experimental study on water-wave trapped modes, J. Fluid Mech., Volume 666 (2011), pp. 445-476
[20] Multiple scattering by random configurations of circular cylinders: second-order corrections for the effective wavenumber, J. Acoust. Soc. Amer., Volume 117 (2005) no. 6, pp. 3413-3423
[21] Global measurement of water waves by Fourier Transform Profilometry, Exp. Fluids, Volume 46 (2009), pp. 1037-1047
[22] Experimental and theoretical inspection of the phase-to-height relation in Fourier transform profilometry, Appl. Opt., Volume 48 (2009) no. 2, pp. 380-392
[23] Fourier transform profilometry for water waves: how to achieve clean water attenuation with diffusive reflection at the water surface?, Exp. Fluids, Volume 52 (2012) no. 2, pp. 519-527
Cited by Sources:
Comments - Policy