In the medical and surgical fields, robotics may be of great interest for safer and more accurate procedures. Space constraints for a robotic assistant are however strict. Therefore, roboticists study non-conventional mechanisms with advantageous size/workspace ratios. The determination of mechanism workspace, and primarily its boundaries, is thus of major importance. This Note builds on boundary equation definition, continuation and automatic differentiation to propose a general, accurate, fast and automated method for the determination of mechanism workspace. The method is illustrated with a planar RRR mechanism and a three-dimensional Orthoglide parallel mechanism.
Dans le contexte médico-chirurgical, la robotique peut être d'un grand intérêt pour des procédures plus sûres et plus précises. Les contraintes de compacité pour un dispositif robotique sont cependant fortes. En conséquence, les roboticiens étudient des mécanismes non conventionnels présentant des ratios taille/espace de travail avantageux. La détermination de l'espace de travail, et en premier lieu de ses frontières, est donc primordiale. Cette Note repose sur la définition des équations de frontière, la continuation et la différentiation automatique pour proposer une méthode de détermination de l'espace de travail des mécanismes générique, précise, rapide et automatisée. La méthode est illustrée sur un mécanisme RRR plan et un mécanisme parallèle tridimensionnel, l'Orthoglide.
Accepted:
Published online:
Mots-clés : Mécanismes, Frontières de l'espace de travail, Système d'équations étendu, Différentiation Automatique, Séries de Taylor, Diamant
Gauthier Hentz 1; Isabelle Charpentier 1; Pierre Renaud 1
@article{CRMECA_2016__344_2_95_0, author = {Gauthier Hentz and Isabelle Charpentier and Pierre Renaud}, title = {Higher-order continuation for the determination of robot workspace boundaries}, journal = {Comptes Rendus. M\'ecanique}, pages = {95--101}, publisher = {Elsevier}, volume = {344}, number = {2}, year = {2016}, doi = {10.1016/j.crme.2015.10.001}, language = {en}, }
TY - JOUR AU - Gauthier Hentz AU - Isabelle Charpentier AU - Pierre Renaud TI - Higher-order continuation for the determination of robot workspace boundaries JO - Comptes Rendus. Mécanique PY - 2016 SP - 95 EP - 101 VL - 344 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2015.10.001 LA - en ID - CRMECA_2016__344_2_95_0 ER -
Gauthier Hentz; Isabelle Charpentier; Pierre Renaud. Higher-order continuation for the determination of robot workspace boundaries. Comptes Rendus. Mécanique, Volume 344 (2016) no. 2, pp. 95-101. doi : 10.1016/j.crme.2015.10.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.10.001/
[1] An optimization approach to the determination of the boundaries of manipulator workspaces, J. Mech. Des., Volume 122 (1998), pp. 447-456
[2] On the workspace boundary determination of serial manipulators with non-unilateral constraints, Robot. Comput.-Integr. Manuf., Volume 24 (2008), pp. 60-76
[3] A complete method for workspace boundary determination on general structure manipulators, IEEE Trans. Robot., Volume 28 (2012), pp. 993-1006
[4] Application of theorem of implicit function system existence for analysis and synthesis of linkages, Mech. Mach. Theory, Volume 15 (1980), pp. 115-125
[5] Numerical algorithms for mapping boundaries of manipulator workspaces, J. Mech. Des., Trans. ASME, Volume 118 (1996), pp. 228-234
[6] Determination of 6D-workspaces of Gough-type parallel manipulator and comparison between different geometries, Int. J. Robot. Res., Volume 18 (1999), pp. 902-916
[7] Automatic differentiation of the asymptotic numerical method: the Diamant approach, C. R. Mecanique, Volume 336 (2008), pp. 336-340
[8] A generic approach for the solution of nonlinear residual equations. Part I: the Diamant toolbox, Comput. Methods Appl. Mech. Eng., Volume 198 (2008), pp. 572-577
[9] On higher-order differentiation in nonlinear mechanics, Optim. Methods Softw., Volume 27 (2012), pp. 221-232
[10] Kinematics and workspace analysis of a three-axis parallel manipulator: the Orthoglide, Robotica, Volume 24 (2006), pp. 39-49
[11] Numerical computation of branch points in nonlinear equation, Numer. Math., Volume 33 (1979), pp. 339-352
[12] Practical Bifurcation and Stability Analysis, Springer, 2009
[13] Advances in polynomial continuation for solving problems in kinematics, J. Mech. Des., Volume 126 (2004), pp. 262-268
[14] Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation, Society for Industrial and Applied Mathematics, 2008
[15] The Tapenade automatic differentiation tool: principles, model, and specification, ACM Trans. Math. Softw., Volume 39 (2013), p. 20:1-20:43
[16] Méthode asymptotique numérique, Eur. J. Comput. Mech., Volume 17 (2008), pp. 553-554
[17] Lectures on Numerical Methods in Bifurcation Problems, Springer-Verlag, Berlin, 1987
[18] Automatic detection and branch switching methods for steady bifurcation in fluid mechanics, J. Comput. Phys., Volume 230 (2011), pp. 3614-3629
[19] Power series analysis as a major breakthrough to improve the efficiency of asymptotic numerical method in the vicinity of bifurcations, J. Comput. Phys., Volume 236 (2013), pp. 594-607
[20] Numerical Continuation Methods, vol. 33, Springer-Verlag, Berlin, 1990
[21] The CUIK suite: analyzing the motion of closed-chain multibody systems, IEEE Robot. Autom. Mag., Volume 21 (2014), pp. 105-114
[22] Sensitivity of solutions computed through the asymptotic numerical method, C. R. Mecanique, Volume 336 (2008), pp. 788-793
Cited by Sources:
Comments - Policy