Comptes Rendus
A nonlocal Fourier's law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices
Comptes Rendus. Mécanique, Volume 344 (2016) no. 6, pp. 388-401.

This study focuses on heat conduction in unidimensional lattices also known as microstructured rods. The lattice thermal properties can be representative of concentrated thermal interface phases in one-dimensional segmented rods. The exact solution of the linear time-dependent spatial difference equation associated with the lattice problem is presented for some given initial and boundary conditions. This exact solution is compared to the quasicontinuum approximation built by continualization of the lattice equations. A rational-based asymptotic expansion of the pseudo-differential problem leads to an equivalent nonlocal-type Fourier's law. The differential nonlocal Fourier's law is analysed with respect to thermodynamic models available in the literature, such as the Guyer–Krumhansl-type equation. The length scale of the nonlocal heat law is calibrated with respect to the lattice spacing. An error analysis is conducted for quantifying the efficiency of the nonlocal model to capture the lattice evolution problem, as compared to the local model. The propagation of error with the nonlocal model is much slower than that in its local counterpart. A two-dimensional thermal lattice is also considered and approximated by a two-dimensional nonlocal heat problem. It is shown that nonlocal and continualized heat equations both approximate efficiently the two-dimensional thermal lattice response. These extended continuous heat models are shown to be good candidates for approximating the heat transfer behaviour of microstructured rods or membranes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2016.01.001
Mots-clés : Heat equation, Lattice, Fourier's law, Nonlocal thermodynamics, Gradient Fourier's law, Nonlocality, Diffusion equation

Noël Challamel 1 ; Cécile Grazide 1 ; Vincent Picandet 1 ; Arnaud Perrot 1 ; Yingyan Zhang 2

1 Université de Bretagne Sud, UBS – Institut Dupuy de Lôme, Centre de Recherche, Rue de Saint Maudé, BP92116, 56321 Lorient Cedex, France
2 School of Computing, Engineering & Mathematics, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
@article{CRMECA_2016__344_6_388_0,
     author = {No\"el Challamel and C\'ecile Grazide and Vincent Picandet and Arnaud Perrot and Yingyan Zhang},
     title = {A nonlocal {Fourier's} law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {388--401},
     publisher = {Elsevier},
     volume = {344},
     number = {6},
     year = {2016},
     doi = {10.1016/j.crme.2016.01.001},
     language = {en},
}
TY  - JOUR
AU  - Noël Challamel
AU  - Cécile Grazide
AU  - Vincent Picandet
AU  - Arnaud Perrot
AU  - Yingyan Zhang
TI  - A nonlocal Fourier's law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 388
EP  - 401
VL  - 344
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2016.01.001
LA  - en
ID  - CRMECA_2016__344_6_388_0
ER  - 
%0 Journal Article
%A Noël Challamel
%A Cécile Grazide
%A Vincent Picandet
%A Arnaud Perrot
%A Yingyan Zhang
%T A nonlocal Fourier's law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices
%J Comptes Rendus. Mécanique
%D 2016
%P 388-401
%V 344
%N 6
%I Elsevier
%R 10.1016/j.crme.2016.01.001
%G en
%F CRMECA_2016__344_6_388_0
Noël Challamel; Cécile Grazide; Vincent Picandet; Arnaud Perrot; Yingyan Zhang. A nonlocal Fourier's law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices. Comptes Rendus. Mécanique, Volume 344 (2016) no. 6, pp. 388-401. doi : 10.1016/j.crme.2016.01.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.01.001/

[1] H.S. Carslaw; J.C. Jaeger Conduction of Heat in Solids, Oxford University Press, 1959

[2] A.C. Eringen A unified theory of thermomechanical materials, Int. J. Eng. Sci., Volume 4 (1966), pp. 179-202

[3] A.C. Eringen; B.S. Kim Relation between non-local elasticity and lattice dynamics, Cryst. Lattice Defects, Volume 7 (1977), pp. 51-57

[4] A.C. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., Volume 54 (1983), pp. 4703-4710

[5] M.A. Collins A quasicontinuum approximation for solitons in an atomic chain, Chem. Phys. Lett., Volume 77 (1981), pp. 342-347

[6] M.D. Kruskal; N.J. Zabusky Stroboscopic perturbation for treating a class of nonlinear wave equations, J. Math. Phys., Volume 5 (1964), pp. 231-244

[7] N.J. Zabusky Computational synergetics and mathematical innovation, J. Comput. Phys., Volume 43 (1981), pp. 195-249

[8] P. Rosenau Dynamics of nonlinear mass-spring chains near the continuum limit, Phys. Lett. A, Volume 118 (1986) no. 5, pp. 222-227

[9] N. Challamel; D. Zorica; T.M. Atanacković; D.T. Spasić On the fractional generalization of Eringen's nonlocal elasticity for wave propagation, C. R. Mecanique, Volume 341 (2013), pp. 298-303

[10] N. Challamel; C.M. Wang; I. Elishakoff Discrete systems behave as nonlocal structural elements: bending, buckling and vibration analysis, Eur. J. Mech. A, Solids, Volume 44 (2014), pp. 125-135

[11] N. Challamel; V. Picandet; B. Collet; T. Michelitsch; I. Elishakoff; C.M. Wang Revisiting finite difference and finite element methods applied to structural mechanics within enriched continua, Eur. J. Mech. A, Solids, Volume 53 (2015), pp. 107-120

[12] N. Challamel; C.M. Wang; I. Elishakoff Nonlocal or gradient elasticity macroscopic models: a question of concentrated or distributed microstructure, Mech. Res. Commun., Volume 71 (2016), pp. 25-31

[13] T. Atanacković; S. Konjic; L. Oparnica; D. Zorica The Cattaneo type space–time fractional heat conduction equation, Contin. Mech. Thermodyn., Volume 24 (2012), pp. 293-311

[14] T. Michelitsch; G.A. Maugin; M. Rahman; S. Derogar; A.F. Nowakowski; F.C.G.A. Nicolleau A continuum theory for one-dimensional self-similar elasticity and applications to wave propagation and diffusion, Eur. J. Appl. Math., Volume 23 (2012) no. 6, pp. 709-735

[15] A. Sapora; P. Cornetti; A. Carpinteri Diffusion problems on fractional nonlocal media, Cent. Eur. J. Phys., Volume 11 (2013) no. 10, pp. 1255-1261

[16] V.E. Tarasov Fractional diffusion equations for lattice and continuum: Grünwald–Letnikov differences and derivatives approach, Int. J. Stat. Mech. (2014) (ID 873529)

[17] M. Zingales An exact thermodynamical model of power-law temperature time-scaling, Ann. Phys., Volume 365 (2016), pp. 24-37

[18] C. Cattaneo Sulla conduzione del calore, Atti Semin. Mat. Fis. Univ. Modena, Volume 3 (1948), pp. 83-101

[19] I. Müller; T. Ruggeri Rational Extended Thermodynamics, Springer, 1998

[20] T. Atanackovic; S. Pilipovic; B. Stankovic; D. Zorica Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, ISTE–Wiley, 2014

[21] T. Atanackovic; S. Pilipovic; B. Stankovic; D. Zorica Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles, ISTE–Wiley, 2014

[22] L. Deseri; M. Zingales A mechanical picture of fractional-order Darcy equation, Commun. Nonlinear Sci. Numer. Simul., Volume 20 (2015), pp. 940-949

[23] Y.J. Yu; X.G. Tian; X.R. Liu Size-dependent generalized thermoelasticity using Eringen's nonlocal model, Eur. J. Mech. A, Solids, Volume 51 (2015), pp. 96-106

[24] S. Oterkus; E. Madenci; A. Agwai Peridynamic thermal diffusion, Chin. J. Comput. Phys., Volume 265 (2014), pp. 71-96

[25] H. Zhan; G. Zhang; Y. Zhang; V.B.C. Tan; J.M. Bell; Y. Gu Thermal conductivity of a new carbon nanotube analogue: the diamond nanothread, Carbon, Volume 98 (2016), pp. 232-237

[26] R.A. Guyer; J.A. Krumhansl Solution of the linearized phonon Boltzman equation, Phys. Rev., Volume 148 (1966), pp. 766-778

[27] R.A. Guyer; J.A. Krumhansl Thermal conductivity, second sound and phonon hydrodynamic phenomena in non-metallic crystals, Phys. Rev., Volume 148 (1966) no. 778–788

[28] G. Lebon; M. Grmela Weakly nonlocal heat equation in rigid solids, Phys. Lett. A, Volume 214 (1996), pp. 184-188

[29] D. Jou; J. Casas-Vasquez; G. Lebon Extended Irreversible Thermodynamics, Springer, 2010

[30] A. Sellitto; D. Jou; J. Bafaluy Non-local effects in radial heat transport in silicon thin layers and grapheme sheets, Proc. R. Soc. A, Math. Phys. Eng. Sci. (2011) | DOI

[31] D. Jou; A. Sellitto; F.X. Alvarez Heat waves and phonon–wall collisions in nanowires, Proc. R. Soc. A, Volume 467 (2011), pp. 2520-2533

[32] D. Jou; V.A. Cimmelli; A. Sellitto Nonlocal heat transport with phonons and electrons: application to metallic nanowires, Int. J. Heat Mass Transf., Volume 55 (2012), pp. 2338-2344

[33] D. Burnett The distribution of molecular velocities and the mean motion in a non-uniform gas, Proc. Lond. Math. Soc., Volume 40 (1936), pp. 382-435

[34] G.I. Barenblatt; I.P. Zheltov; I.N. Kochina Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata), J. Appl. Math. Mech., Volume 24 (1960), pp. 1286-1303

[35] A.C. Aifantis On the problem of diffusion in solids, Acta Mech., Volume 37 (1980), pp. 265-296

[36] T.W. Ting Certain non-steady flows of second-order fluids, Arch. Ration. Mech. Anal., Volume 14 (1963), pp. 1-26

[37] P.J. Chen; M.E. Gurtin On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., Volume 19 (1968), pp. 614-627

[38] G.A. Maugin On the thermomechanics of continuous media with diffusion and/or weak nonlocality, Arch. Appl. Mech., Volume 75 (2006), pp. 723-738

[39] A. Berezovski; J. Engelbrecht; P. Ván Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature, Arch. Appl. Mech., Volume 84 (2014), pp. 1249-1261

[40] S.P. Filopoulos; T.K. Papathanasiou; S.I. Markolefas; G.J. Tsamasphyros Generalized thermoelastic models for linear elastic materials with micro-structure, part I: enhanced Green–Lindsay model, J. Therm. Stresses, Volume 37 (2014), pp. 624-641

[41] S.P. Filopoulos; T.K. Papathanasiou; S.I. Markolefas; G.J. Tsamasphyros Generalized thermoelastic models for linear elastic materials with micro-structure, part II: enhanced Lord–Shulman model, J. Therm. Stresses, Volume 37 (2014), pp. 642-659

[42] J. Crank; P. Nicolson A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Proc. Camb. Philos. Soc., Volume 43 (1947), pp. 50-67 (see also Adv. Comput. Math., 6, 1996, pp. 207-226)

[43] J.G. Charney; R. Fjørtoft; J. von Neumann Numerical integration of the barotropic vorticity equation, Tellus, Volume 2 (1950) no. 4, pp. 237-254

[44] L. Collatz The Mathematical Treatment of Differential Equations, Springer-Verlag, New York, 1960

[45] B. Gustafsson; H.O. Kreiss; J. Oliger Time Dependent Problems and Difference Methods, Wiley, New York, 1995

[46] J.A.D. Wattis Quasi-continuum approximations to lattice equations arising from the discrete non-linear telegraph equation, J. Phys. A, Math. Gen., Volume 33 (2000), pp. 5925-5944

[47] P.G. Kevrekidis; I.G. Kevrekidis; A.R. Bishop; E.S. Titi Continuum approach to discreteness, Phys. Rev. E, Volume 65 (2002) no. 046613, pp. 1-13

[48] I.V. Andrianov; J. Awrejcewicz; D. Weichert Improved continuous models for discrete media, Math. Probl. Eng., Volume 986242 (2010), pp. 1-35

[49] P. Nielsen; I.A. Teakle Turbulent diffusion of momentum and suspended particles: a finite-mixing-length theory, Phys. Fluids, Volume 16 (2004) no. 7, pp. 2342-2348

[50] P. Rosenau Dynamics of dense lattices, Phys. Rev. B, Condens. Matter, Volume 36 (1987) no. 11, pp. 5868-5876

[51] I.V. Andrianov; J. Awrejcewicz Continuous models for 2D discrete media valid for higher-frequency domain, Comput. Struct., Volume 86 (2008), pp. 140-144

[52] M. Lombardo; H. Askes Elastic wave dispersion in microstructured membranes, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 466 (2010), pp. 1789-1807

[53] T.D. Lee Can time be a discrete variable?, Phys. Lett. B, Volume 122 (1983) no. 3, 4, pp. 217-220

  • Lina Zhao; Peijun Wei The propagation of axisymmetric guided waves in cylindrical rods based on fractional order thermo-visco-elastic model, European Journal of Mechanics - A/Solids, Volume 111 (2025), p. 105541 | DOI:10.1016/j.euromechsol.2024.105541
  • Sonal Jhajhria; Sunita Deswal; Sandeep Singh Sheoran Dynamical Analysis of Response in a Micropolar Thermodiffusive Medium With Two Temperatures and Variable Thermal Conductivity Based on Eringen's Nonlocal Elasticity, Heat Transfer (2025) | DOI:10.1002/htj.23330
  • Zhangna Xue; Hongtao Zhang; Jianlin Liu; Minjie Wen Thermoelastic Response of Porous Media Considering Spatial Scale Effects of Heat Transfer and Deformation, Journal of Engineering Mechanics, Volume 151 (2025) no. 2 | DOI:10.1061/jenmdt.emeng-7730
  • B. Das; N. Islam; A. Lahiri Study of non-local thermoelasticity of a rectangular plate, Journal of Thermal Stresses, Volume 48 (2025) no. 2, p. 186 | DOI:10.1080/01495739.2025.2466099
  • Amit Jangra; Parmender Sheokand; Sunita Deswal Wave propagation in a nonlocal microstretch saturated porothermoelastic medium under Moore-Gibson-Thompson heat conduction model, The Journal of Strain Analysis for Engineering Design, Volume 60 (2025) no. 2, p. 88 | DOI:10.1177/03093247241288306
  • Shishir Gupta; Rachaita Dutta; Soumik Das; Deepak Kr. Pandit Hall current effect in double poro-thermoelastic material with fractional-order Moore–Gibson–Thompson heat equation subjected to Eringen's nonlocal theory, Waves in Random and Complex Media, Volume 35 (2025) no. 1, p. 108 | DOI:10.1080/17455030.2021.2021315
  • Chenlin Li; Jiaheng Liu; Tianhu He Nonlocal dual-phase-lag Cattaneo-type thermoelastic diffusion theory and its application in 1D transient dynamic responses analysis for copper-metallic layered structure, Acta Mechanica, Volume 235 (2024) no. 10, p. 6341 | DOI:10.1007/s00707-024-04050-6
  • Shilpa Chaudhary; Sunita Deswal; Sandeep Singh Sheoran Analysis of nonlocal effects on plane waves in a transversely isotropic visco-thermoelastic medium with variable thermal conductivity, International Journal of Numerical Methods for Heat Fluid Flow, Volume 34 (2024) no. 1, p. 109 | DOI:10.1108/hff-03-2023-0121
  • Pooja Kadian; Sunil Kumar; Neelam Hooda; Monika Sangwan Reflection of plane waves in a non-local viscothermoelastic half-space under variable thermal conductivity and microelongation effects, Journal of Thermal Stresses, Volume 47 (2024) no. 11, p. 1479 | DOI:10.1080/01495739.2024.2415025
  • Samia M. Said; Mohamed I. A. Othman 2D Problem of a Nonlocal Thermoelastic Diffusion Solid with Gravity via Three Theories, Journal of Vibration Engineering Technologies, Volume 12 (2024) no. 4, p. 5423 | DOI:10.1007/s42417-023-01172-4
  • Sunita Deswal; Kapil Kumar Kalkal; Priti Dhankhar; Ravinder Poonia Reflection of Plane Waves in a Nonlocal Transversely Isotropic Micropolar Thermoelastic Medium with Temperature-Dependent Properties, Journal of Vibration Engineering Technologies, Volume 12 (2024) no. 7, p. 8595 | DOI:10.1007/s42417-024-01378-0
  • Xianzhang Dong; Baochen Lin; Huigang Xiao; Min Liu Simulation of thermal radiation effects on the thermal properties of parietodynamic walls using an innovative model, Low-carbon Materials and Green Construction, Volume 2 (2024) no. 1 | DOI:10.1007/s44242-024-00044-8
  • Huili Guo; Zhipeng Xu; Fulin Shang; Tianhu He A new constitutive theory of nonlocal piezoelectric thermoelasticity based on nonlocal single-phase lag heat conduction and structural transient thermo-electromechanical response of piezoelectric nanorod, Mechanics of Advanced Materials and Structures, Volume 31 (2024) no. 29, p. 11737 | DOI:10.1080/15376494.2024.2311240
  • Priti Dhankhar; M. S. Barak; Ravinder Poonia Nonlocal and micropolar effects in a transversely isotropic functionally graded thermoelastic solid under an inclined load, Mechanics of Time-Dependent Materials, Volume 28 (2024) no. 3, p. 1349 | DOI:10.1007/s11043-024-09687-3
  • Kirti Boora; Sunita Deswal; Kapil Kumar Kalkal Propagation of plane waves at the initially stressed surface of an orthotropic nonlocal rotating half space under dual-phase-lag model, Multidiscipline Modeling in Materials and Structures, Volume 20 (2024) no. 4, p. 617 | DOI:10.1108/mmms-08-2023-0259
  • Kavita Jain; Sunil Kumar; Sunita Deswal Plane waves in nonlocal viscothermoelastic medium with temperature-dependent properties under three-phase-lag theory, Waves in Random and Complex Media, Volume 34 (2024) no. 2, p. 573 | DOI:10.1080/17455030.2021.1916125
  • Sunita Deswal; Baljit Singh Punia; Ankush Gunghas; Kapil Kumar Kalkal Nonlocal and thermal phase-lag effects on an exponentially graded micropolar elastic material with rotation and gravity, Waves in Random and Complex Media, Volume 34 (2024) no. 2, p. 648 | DOI:10.1080/17455030.2021.1917792
  • Ramesh Kumar; Devender Sheoran; Seema Thakran; Kapil Kumar Kalkal Waves in a nonlocal micropolar thermoelastic half-space with voids under dual-phase-lag model, Waves in Random and Complex Media, Volume 34 (2024) no. 5, p. 3812 | DOI:10.1080/17455030.2021.1984612
  • Sandeep Singh Sheoran; Shilpa Chaudhary; Sunita Deswal Thermo-mechanical interactions in a nonlocal transversely isotropic material with rotation under Lord–Shulman model, Waves in Random and Complex Media, Volume 34 (2024) no. 5, p. 3970 | DOI:10.1080/17455030.2021.1986648
  • M. S. Barak; Ravinder Poonia; Savita Devi; Priti Dhankhar Nonlocal and dual‐phase‐lag effects in a transversely isotropic exponentially graded thermoelastic medium with voids, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 104 (2024) no. 5 | DOI:10.1002/zamm.202300579
  • Rakhi Tiwari, 2ND INTERNATIONAL CONFERENCE EXPOSITION ON MECHANICAL, MATERIAL, AND MANUFACTURING TECHNOLOGY (ICE3MT 2022), Volume 2943 (2023), p. 040003 | DOI:10.1063/5.0187051
  • Chenlin Li; Yaning Lu; Huili Guo; Tianhu He; Xiaogeng Tian Non-Fick diffusion–elasticity based on a new nonlocal dual-phase-lag diffusion model and its application in structural transient dynamic responses, Acta Mechanica, Volume 234 (2023) no. 7, p. 2745 | DOI:10.1007/s00707-023-03519-0
  • S. Lurie; D. Volkov-Bogorodskii; H. Altenbach; P. Belov; L. Nazarenko Coupled problems of gradient thermoelasticity for periodic structures, Archive of Applied Mechanics, Volume 93 (2023) no. 1, p. 23 | DOI:10.1007/s00419-022-02197-z
  • Mohammad Azhdari; Seyed Morteza Seyedpour; Lena Lambers; Hans-Michael Tautenhahn; Franziska Tautenhahn; Tim Ricken; Ghader Rezazadeh Non-local three phase lag bio thermal modeling of skin tissue and experimental evaluation, International Communications in Heat and Mass Transfer, Volume 149 (2023), p. 107146 | DOI:10.1016/j.icheatmasstransfer.2023.107146
  • B. Das; S. S. Sardar; D. Ghosh; A. Lahiri Wave propagation in a non-local magneto-thermoelastic medium permeated by heat source, International Journal for Computational Methods in Engineering Science and Mechanics, Volume 24 (2023) no. 5, p. 314 | DOI:10.1080/15502287.2023.2186968
  • Sandeep Kundu; Kapil Kumar Kalkal; Monika Sangwan; Devender Sheoran Two-dimensional deformations in an initially stressed nonlocal micropolar thermoelastic porous medium subjected to a moving thermal load, International Journal of Numerical Methods for Heat Fluid Flow, Volume 33 (2023) no. 3, p. 1116 | DOI:10.1108/hff-04-2022-0231
  • Shishir Gupta; Rachaita Dutta; Soumik Das Memory response in a nonlocal micropolar double porous thermoelastic medium with variable conductivity under Moore-Gibson-Thompson thermoelasticity theory, Journal of Ocean Engineering and Science, Volume 8 (2023) no. 3, p. 263 | DOI:10.1016/j.joes.2022.01.010
  • Kapil Kumar Kalkal; Sunita Deswal; Ravinder Poonia Reflection of plane waves in a rotating nonlocal fiber-reinforced transversely isotropic thermoelastic medium, Journal of Thermal Stresses, Volume 46 (2023) no. 4, p. 276 | DOI:10.1080/01495739.2023.2173686
  • Shishir Gupta; Soumik Das; Rachaita Dutta Peltier and Seebeck effects on a nonlocal couple stress double porous thermoelastic diffusive material under memory-dependent Moore-Gibson-Thompson theory, Mechanics of Advanced Materials and Structures, Volume 30 (2023) no. 3, p. 449 | DOI:10.1080/15376494.2021.2017525
  • E. Nuñez del Prado; Noel Challamel; V. Picandet Higher-Order and Nonlocal One-Dimensional Thermal Lattices with Short- and Long-Range Interactions, Mechanics of High-Contrast Elastic Solids, Volume 187 (2023), p. 201 | DOI:10.1007/978-3-031-24141-3_12
  • M.S. Barak; Priti Dhankhar Thermo‐mechanical interactions in a rotating nonlocal functionally graded transversely isotropic elastic half‐space, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 103 (2023) no. 2 | DOI:10.1002/zamm.202200319
  • Ravinder Poonia; Sunita Deswal; Kapil Kumar Kalkal Propagation of plane waves in a nonlocal transversely isotropic thermoelastic medium with voids and rotation, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 103 (2023) no. 9 | DOI:10.1002/zamm.202200493
  • Rakhi Tiwari; Ravi Kumar Non-local effect on quality factor of micro-mechanical resonator under the purview of three-phase-lag thermoelasticity with memory-dependent derivative, Applied Physics A, Volume 128 (2022) no. 3 | DOI:10.1007/s00339-022-05322-5
  • Aniruddha Bora; Weizhong Dai; Joshua P. Wilson; Jacob C. Boyt; Sergey L. Sobolev Neural network method for solving nonlocal two-temperature nanoscale heat conduction in gold films exposed to ultrashort-pulsed lasers, International Journal of Heat and Mass Transfer, Volume 190 (2022), p. 122791 | DOI:10.1016/j.ijheatmasstransfer.2022.122791
  • Ke Chen; Zhiqiang Huang; Rong Deng; Wenlin Zhang; Minqiang Kang; Yachao Ma; Mingjiang Shi; Jing Yan Research on the temperature and stress fields of elliptical laser irradiated sandstone, and drilling with the elliptical laser-assisted mechanical bit, Journal of Petroleum Science and Engineering, Volume 211 (2022), p. 110147 | DOI:10.1016/j.petrol.2022.110147
  • Sunita Deswal; Devender Sheoran; Seema Thakran; Kapil Kumar Kalkal Reflection of plane waves in a nonlocal microstretch thermoelastic medium with temperature dependent properties under three-phase-lag model, Mechanics of Advanced Materials and Structures, Volume 29 (2022) no. 12, p. 1692 | DOI:10.1080/15376494.2020.1837307
  • Hashmat Ali; Adnan Jahangir; Ehtsham Azhar Reflection Phenomenon of Thermoelastic Wave in a Micropolar Semiconducting Porous Medium, Mechanics of Solids, Volume 57 (2022) no. 4, p. 856 | DOI:10.3103/s0025654422040021
  • Sandeep Singh Sheoran; Shilpa Chaudhary; Kapil Kumar Kalkal Nonlocal thermodynamical vibrations in a rotating magneto-thermoelastic medium based on modified Ohm's law with temperature-dependent properties, Multidiscipline Modeling in Materials and Structures, Volume 18 (2022) no. 6, p. 1087 | DOI:10.1108/mmms-05-2022-0089
  • Mir Abbas Roudbari; Tahereh Doroudgar Jorshari; Chaofeng Lü; Reza Ansari; Abbas Z. Kouzani; Marco Amabili A review of size-dependent continuum mechanics models for micro- and nano-structures, Thin-Walled Structures, Volume 170 (2022), p. 108562 | DOI:10.1016/j.tws.2021.108562
  • Yongbin Ma; Le Wang A new two-temperature generalized magneto-thermoelastic 2D problems considering non-local effect and memory-dependent effect, Waves in Random and Complex Media (2022), p. 1 | DOI:10.1080/17455030.2022.2072534
  • Devender Sheoran; Ramesh Kumar; Baljit Singh Punia; Kapil Kumar Kalkal Propagation of waves at an interface between a nonlocal micropolar thermoelastic rotating half-space and a nonlocal thermoelastic rotating half-space, Waves in Random and Complex Media (2022), p. 1 | DOI:10.1080/17455030.2022.2087118
  • Huili Guo; Yaning Lu; Fulin Shang; Tianhu He Nonlocal mechanical-diffusion model with Eringen-type nonlocal single-phase-lag mass transfer and its application in structural dynamics response of a thin nanoplate, Waves in Random and Complex Media (2022), p. 1 | DOI:10.1080/17455030.2022.2149886
  • Guanqiang Dong; Mingcong Deng GPU Based Modelling and Analysis for Parallel Fractional Order Derivative Model of the Spiral-Plate Heat Exchanger, Axioms, Volume 10 (2021) no. 4, p. 344 | DOI:10.3390/axioms10040344
  • Pengfei Luo; Xiaoya Li; Xiaogeng Tian Nonlocal thermoelasticity and its application in thermoelastic problem with temperature-dependent thermal conductivity, European Journal of Mechanics - A/Solids, Volume 87 (2021), p. 104204 | DOI:10.1016/j.euromechsol.2020.104204
  • Vincent Picandet; Noël Challamel Nonlocal thermal diffusion in one-dimensional periodic lattice, International Journal of Heat and Mass Transfer, Volume 180 (2021), p. 121753 | DOI:10.1016/j.ijheatmasstransfer.2021.121753
  • Devender Sheoran; Rajesh Kumar; Seema Thakran; Kapil Kumar Kalkal Thermo-mechanical disturbances in a nonlocal rotating elastic material with temperature dependent properties, International Journal of Numerical Methods for Heat Fluid Flow, Volume 31 (2021) no. 12, p. 3597 | DOI:10.1108/hff-12-2020-0794
  • Rajesh Kumar; Seema Thakran; Ankush Gunghas; Kapil Kumar Kalkal Transient disturbances in a nonlocal functionally graded thermoelastic solid under Green–Lindsay model, International Journal of Numerical Methods for Heat Fluid Flow, Volume 31 (2021) no. 7, p. 2288 | DOI:10.1108/hff-08-2020-0514
  • Dinesh Kumar Sharma; Mitali Bachher; Mahesh Kumar Sharma; Nantu Sarkar On the Analysis of Free Vibrations of Nonlocal Elastic Sphere of FGM Type in Generalized Thermoelasticity, Journal of Vibration Engineering Technologies, Volume 9 (2021) no. 1, p. 149 | DOI:10.1007/s42417-020-00217-2
  • Sergey A. Lurie; Dmitrii B. Volkov-Bogorodskii; Petr A. Belov Analytical Solution of Stationary Coupled Thermoelasticity Problem for Inhomogeneous Structures, Mathematics, Volume 10 (2021) no. 1, p. 90 | DOI:10.3390/math10010090
  • J. Sladek; V. Sladek; M. Repka The Heat Conduction in Nanosized Structures, Physical Mesomechanics, Volume 24 (2021) no. 5, p. 611 | DOI:10.1134/s102995992105012x
  • Nantu Sarkar Thermoelastic responses of a finite rod due to nonlocal heat conduction, Acta Mechanica, Volume 231 (2020) no. 3, p. 947 | DOI:10.1007/s00707-019-02583-9
  • Kapil Kumar Kalkal; Devender Sheoran; Sunita Deswal Reflection of plane waves in a nonlocal micropolar thermoelastic medium under the effect of rotation, Acta Mechanica, Volume 231 (2020) no. 7, p. 2849 | DOI:10.1007/s00707-020-02676-w
  • K. Zhukovsky; D. Oskolkov Modeling of heat transport and exact analytical solutions in thin films with account for constant non-relativistic motion, International Journal of Heat and Mass Transfer, Volume 150 (2020), p. 119085 | DOI:10.1016/j.ijheatmasstransfer.2019.119085
  • Jan Sladek; Vladimir Sladek; Miroslav Repka; Ernian Pan A novel gradient theory for thermoelectric material structures, International Journal of Solids and Structures, Volume 206 (2020), p. 292 | DOI:10.1016/j.ijsolstr.2020.09.023
  • Ali Hashmat; Jahangir Adnan; Khan Aftab Reflection of thermo-elastic wave in semiconductor nanostructures nonlocal porous medium, Journal of Central South University, Volume 27 (2020) no. 11, p. 3188 | DOI:10.1007/s11771-020-4472-1
  • Dinesh Kumar Sharma; Dinesh Thakur; Vishal Walia; Nantu Sarkar Free vibration analysis of a nonlocal thermoelastic hollow cylinder with diffusion, Journal of Thermal Stresses, Volume 43 (2020) no. 8, p. 981 | DOI:10.1080/01495739.2020.1764425
  • Nantu Sarkar Thermoelastic responses of a nonlocal elastic rod due to nonlocal heat conduction, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 100 (2020) no. 4 | DOI:10.1002/zamm.201900252
  • Sergey Lurie; Petr Belov From Generalized Theories of Media with Fields of Defects to Closed Variational Models of the Coupled Gradient Thermoelasticity and Thermal Conductivity, Higher Gradient Materials and Related Generalized Continua, Volume 120 (2019), p. 135 | DOI:10.1007/978-3-030-30406-5_8
  • Nantu Sarkar; S. K. Tomar Plane waves in nonlocal thermoelastic solid with voids, Journal of Thermal Stresses, Volume 42 (2019) no. 5, p. 580 | DOI:10.1080/01495739.2018.1554395
  • Sudip Mondal; Nihar Sarkar; Nantu Sarkar Waves in dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity, Journal of Thermal Stresses, Volume 42 (2019) no. 8, p. 1035 | DOI:10.1080/01495739.2019.1591249
  • Mitali Bachher; Nantu Sarkar Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer, Waves in Random and Complex Media, Volume 29 (2019) no. 4, p. 595 | DOI:10.1080/17455030.2018.1457230
  • Konstantin Zhukovsky; Dmitrii Oskolkov; Nadezhda Gubina Some Exact Solutions to Non-Fourier Heat Equations with Substantial Derivative, Axioms, Volume 7 (2018) no. 3, p. 48 | DOI:10.3390/axioms7030048
  • K. Zhukovsky; D. Oskolkov Exact harmonic solutions to Guyer–Krumhansl-type equation and application to heat transport in thin films, Continuum Mechanics and Thermodynamics, Volume 30 (2018) no. 6, p. 1207 | DOI:10.1007/s00161-018-0648-4
  • K. Zhukovsky Exact harmonic solution to ballistic type heat propagation in thin films and wires, International Journal of Heat and Mass Transfer, Volume 120 (2018), p. 944 | DOI:10.1016/j.ijheatmasstransfer.2017.12.091
  • B. Hérisson; N. Challamel; V. Picandet; A. Perrot; C. M. Wang Static and Dynamic Behaviors of Microstructured Membranes within Nonlocal Mechanics, Journal of Engineering Mechanics, Volume 144 (2018) no. 1 | DOI:10.1061/(asce)em.1943-7889.0001379
  • K. V. Zhukovsky A Harmonic Solution for the Hyperbolic Heat Conduction Equation and Its Relationship to the Guyer–Krumhansl Equation, Moscow University Physics Bulletin, Volume 73 (2018) no. 1, p. 45 | DOI:10.3103/s0027134918010186

Cité par 66 documents. Sources : Crossref

Commentaires - Politique