Comptes Rendus
Dynamic behaviour of a wind turbine gear system with uncertainties
Comptes Rendus. Mécanique, Volume 344 (2016) no. 6, pp. 375-387.

In this paper, a new methodology for taking into account uncertainties in a gearbox transmission system of a horizontal-axis wind turbine is proposed. Gearbox transmission is the major part of the wind turbine's drive train. For a more reasonable evaluation of its dynamic behaviour, the influence of the uncertain parameters should be taken into consideration. The dynamic equations are solved by using the Polynomial Chaos method combined with the ODE45 solver of Matlab. The effects of the random perturbation caused by the aerodynamic torque excitation on the dynamic response of the studied system are discussed in detail. The proposed method is an efficient probabilistic tool for uncertainty propagation. For more accuracy, the Polynomial Chaos results are compared with direct simulations.

Published online:
DOI: 10.1016/j.crme.2016.01.003
Keywords: Gearbox system, Uncertainty, Random aerodynamic torque, Polynomial chaos

Moez Beyaoui 1; Manel Tounsi 1; Kamel Abboudi 1; Nabih Feki 1; Lassaad Walha 1; Mohamed Haddar 1

1 Laboratory of Mechanics, Modelling and Manufacturing (LA2MP), National Engineering School of Sfax, Ministry of Higher Education and Research of Tunisia, BP 1173, 3038 Sfax, Tunisia
     author = {Moez Beyaoui and Manel Tounsi and Kamel Abboudi and Nabih Feki and Lassaad Walha and Mohamed Haddar},
     title = {Dynamic behaviour of a wind turbine gear system with uncertainties},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {375--387},
     publisher = {Elsevier},
     volume = {344},
     number = {6},
     year = {2016},
     doi = {10.1016/j.crme.2016.01.003},
     language = {en},
AU  - Moez Beyaoui
AU  - Manel Tounsi
AU  - Kamel Abboudi
AU  - Nabih Feki
AU  - Lassaad Walha
AU  - Mohamed Haddar
TI  - Dynamic behaviour of a wind turbine gear system with uncertainties
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 375
EP  - 387
VL  - 344
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2016.01.003
LA  - en
ID  - CRMECA_2016__344_6_375_0
ER  - 
%0 Journal Article
%A Moez Beyaoui
%A Manel Tounsi
%A Kamel Abboudi
%A Nabih Feki
%A Lassaad Walha
%A Mohamed Haddar
%T Dynamic behaviour of a wind turbine gear system with uncertainties
%J Comptes Rendus. Mécanique
%D 2016
%P 375-387
%V 344
%N 6
%I Elsevier
%R 10.1016/j.crme.2016.01.003
%G en
%F CRMECA_2016__344_6_375_0
Moez Beyaoui; Manel Tounsi; Kamel Abboudi; Nabih Feki; Lassaad Walha; Mohamed Haddar. Dynamic behaviour of a wind turbine gear system with uncertainties. Comptes Rendus. Mécanique, Volume 344 (2016) no. 6, pp. 375-387. doi : 10.1016/j.crme.2016.01.003.

[1] A.G. González Rodríguez; A. González Rodríguez; M. Burgos Payán Estimating wind turbines mechanical constants, ICREPQ'07, 28–30 March, Sevilla, Spain (2007)

[2] M. Gabriele; A.D. Hansen; T. Hartkopf Variable speed wind turbines – modeling, control and impact on power systems, Brussels (2008), pp. 100-104

[3] F. AbdalRassul Abbas; M. Abdulla Abdulsada Simulation of wind-turbine speed control by MATLAB, Int. J. Comput. Electr. Eng., Volume 2 (2010) no. 5, pp. 915-917

[4] Z. Hameed; Y.S. Hong; Y.M. Cho; S.H. Ahn; C.K. Song Condition monitoring and fault detection of wind turbines and related algorithms: a review, Renew. Sustain. Energy Rev., Volume 13 (2009) no. 1, pp. 1-39

[5] K. Abboudi; L. Walha; Y. Driss; M. Maatar; T. Fakhfakh; M. Haddar Dynamic behavior of a two-stage gear train used in a fixed-speed wind turbine, Mech. Mach. Theory, Volume 46 (2011), pp. 1888-1900

[6] M. Rahimi; M. Parniani Dynamic behavior and transient stability analysis of fixed speed wind turbines, Renew. Energy, Volume 34 (2009) no. 12, pp. 2613-2624

[7] Y. Guo; J. Keller; W. LaCava Combined effects of gravity, bending moment, bearing clearance, and input torque on wind turbine planetary gear load sharing, Dearborn, MI, USA (2012)

[8] J. Helsen; F. Vanhollebeke; B. Marrant; D. Vandepitte; W. Desmet Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes, Renew. Energy, Volume 36 (2011) no. 11, pp. 3098-3113

[9] W. Sha; Z. Jingshan; H. Qinkai; C. Fulei Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty, Renew. Energy, Volume 78 (2015), pp. 60-67

[10] W. Jingyue; W. Haotian; G. Lixin Analysis of effect of random perturbation on dynamic response of gear transmission system, Chaos Solitons Fractals, Volume 68 (2015), pp. 78-88

[11] G.S. Fishman; Monte Carlo Concepts, Algorithms and Applications, Springer Verlag, 1996

[12] R.Y. Rubinstein Simulation and the Monte Carlo Method, John Wiley & Sons Inc., New York, 1981

[13] M.H. Kalos; P.A. Whitlock Monte Carlo Methods, Basics, vol. 1, Wiley-Interscience, New York, 1986

[14] R.G. Ghanem; P.D. Spanos A stochastic Galerkin expansion for nonlinear random vibration analysis, Probab. Eng. Mech., Volume 8 (1993) no. 3, pp. 255-264

[15] R.G. Ghanem; P.D. Spanos Polynomial chaos in stochastic finite element, J. Appl. Mech., Volume 57 (1990), pp. 197-202

[16] P. Pettersson; G. Iaccarino; J. Nordstrom Numerical analysis of the Burgers' equation in the presence of uncertainty, J. Comput. Phys., Volume 228 (2009), pp. 8394-8412

[17] T. Chantrasmi; P. Constantine; N. Etemadiz; G. Iaccarino; Q. Wang Uncertainty quantification in simple linear and non-linear problems, Center for Turbulence Research, Annual Research Briefs, 2006

[18] T. Chantrasmi; A. Doostan; G. Iaccarino Padé–Legendre, approximants for uncertainty analysis with discontinuous response surfaces, J. Comput. Phys., Volume 228 (2009), pp. 7159-7180

[19] H.N. Najm Uncertainty quantification and Polynomial Chaos techniques in computational fluid dynamics, Annu. Rev. Fluid Mech., Volume 41 (2009), p. 35

[20] M.S. Eldred Recent advances in non-intrusive Polynomial Chaos and stochastic collocation methods for uncertainty analysis and design, Palm Springs, CA, USA (2009) (No. AIAA-2009-2274)

[21] D. Ghosh; C. Farhat Strain and stress computations in stochastic finite element methods, Int. J. Numer. Methods Eng., Volume 74 (2008) no. 8, pp. 1219-1239

[22] H.N. Najm; B.J. Debusschere; Y.M. Marzouk; S. Widmer; O.P. Le Maître Uncertainty quantification in chemical systems, Int. J. Numer. Methods Eng., Volume 80 (2009), pp. 789-814

[23] C. Sandu; A. Sandu; L. Li Stochastic modeling of terrain profiles and soil parameters, SAE 2005 Trans. J. Commer. Veh., Volume 114 (2006) no. 2, pp. 211-220

[24] A. Sandu; C. Sandu; M. Ahmadian Modeling multibody dynamic systems with uncertainties. Part I: theoretical and computational aspects, Multibody Syst. Dyn., Volume 15 (2006) no. 4, pp. 369-391

[25] R. Gasch; J. Twele Wind Power Plants. Fundamentals, Design, Construction and Operation, James & James Science Publishers Ltd, 2002

[26] L. Buhl A new empirical relationship between thrust coefficient and induction factor for the turbulent windmill state, August 2005 (Technical report, NREL/TP-500-36834)

[27] G.P. Corten Flow separation on wind turbine blades, Utrecht University, Utrecht, The Netherlands, 2001 (Ph.D. thesis)

[28] P.J. Moriarty; A.C. Hansen AeroDyn theory manual, January 2005 (Technical report, NREL/TP-500-36881)

[29] Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering (D.A. Sphera, ed.), ASME, 1998

[30] S. Rajakumar; D. Ravindran Iterative approach for optimising coefficient of power, coefficient of lift and drag of wind turbine rotor, Renew. Energy, Volume 38 (2012), pp. 83-93

[31] R. Lanzafame; M. Messina Fluid dynamics wind turbine design: critical analysis, optimization and application of BEM theory, Renew. Energy, Volume 32 (2007) no. 14, pp. 2291-2305

[32] L. Walha; T. Fakhfakh; M. Haddar Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash, Mech. Mach. Theory, Volume 44 (2009), pp. 1058-1069

[33] R.B. Jairo Alberto; L.L. Juan Fernando; Q.R. Héctor Fabio Design, modeling and dynamic simulation of three double stage gearboxes with different module, mesh stiffness fluctuation and different level tooth breakage, Rev. Fac. Ing. Univ. Antioquia, Volume 74 (2015), pp. 117-131

[34] L. Nechak; S. Berger; E. Aubry A Polynomial Chaos approach to the robust analysis of the dynamic behavior of friction systems, Eur. J. Mech. A, Solids, Volume 30 (2011) no. 4, pp. 594-607

[35] P. Pourazarm; L. Caracoglia; M. Lackner; Y. Sadeghi Stochastic analysis of flow-induced dynamic instabilities of wind turbine blades, J. Wind Eng. Ind. Aerodyn., Volume 137 (2015), pp. 37-45

[36] A. Desail; J.A.S. Witteveen; S. Sarkar Uncertainty quantification of a nonlinear aeroelastic system using Polynomial Chaos Expansion with constant phase interpolation, J. Vib. Acoust., Volume 135 (2013), pp. 1-13

[37] S. Duck Kwon Uncertainty of bridge flutter velocity measured at wind tunnel tests, CWE2010, Chapel Hill, NC, USA (2010)

[38] Z.Y. Liu; X.D. Wang; S. Kang Stochastic performance evaluation of horizontal axis wind turbine blades using non-deterministic CFD simulations, Energy, Volume 73 (2014), pp. 126-136

Cited by Sources:

Comments - Policy