We study buckling patterns in pantographic sheets, regarded as two-dimensional continua consisting of lattices of continuously distributed fibers. The fibers are modeled as beams endowed with elastic resistance to stretching, shearing, bending and twist. Included in the theory is a non-standard elasticity due to geodesic bending of the fibers relative to the lattice surface.
Nous étudions le flambage de milieux continus bidimensionnels. Ces milieux, que nous appelons « feuilles pantographiques », sont constitués par un réseau formé de deux familles orthogonales de fibres parallèles. Ces fibres sont considérées comme des poutres élastiques reliées entre elles à chaque intersection par une liaison pivot. Le modèle bidimensionnel continu utilisé généralise celui des plaques, puisqu'il prend en compte l'énergie élastique liée à la courbure des fibres dans le plan de la structure.
Accepted:
Published online:
Mots-clés : Structures pantographiques, Flambage, Milieux continus du second gradient, Flexion géodésique, Élasticité non linéaire
Ivan Giorgio 1, 2; Alessandro Della Corte 3, 2; Francesco dell'Isola 1, 2; David J. Steigmann 4, 2
@article{CRMECA_2016__344_7_487_0, author = {Ivan Giorgio and Alessandro Della Corte and Francesco dell'Isola and David J. Steigmann}, title = {Buckling modes in pantographic lattices}, journal = {Comptes Rendus. M\'ecanique}, pages = {487--501}, publisher = {Elsevier}, volume = {344}, number = {7}, year = {2016}, doi = {10.1016/j.crme.2016.02.009}, language = {en}, }
TY - JOUR AU - Ivan Giorgio AU - Alessandro Della Corte AU - Francesco dell'Isola AU - David J. Steigmann TI - Buckling modes in pantographic lattices JO - Comptes Rendus. Mécanique PY - 2016 SP - 487 EP - 501 VL - 344 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2016.02.009 LA - en ID - CRMECA_2016__344_7_487_0 ER -
Ivan Giorgio; Alessandro Della Corte; Francesco dell'Isola; David J. Steigmann. Buckling modes in pantographic lattices. Comptes Rendus. Mécanique, Volume 344 (2016) no. 7, pp. 487-501. doi : 10.1016/j.crme.2016.02.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.02.009/
[1] Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching, Acta Mech. Sin., Volume 31 (2015), pp. 373-382
[2] Theories of elasticity with couple stress, Arch. Ration. Mech. Anal., Volume 17 (1964), pp. 85-112
[3] Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., Volume 11 (1962), pp. 415-448
[4] Couple-stresses in the theory of elasticity, Proc. K. Ned. Akad. Wet. B, Volume 67 (1964), pp. 17-44
[5] The method of virtual power in continuum mechanics, part 2: microstructure, SIAM J. Appl. Math., Volume 25 (1973), pp. 556-575
[6] Evolution of a fibre-reinforced growing mixture, Nuovo Cimento Soc. Ital. Fis. C, Volume 32 (2009), pp. 97-119
[7] Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials, Int. J. Non-Linear Mech., Volume 47 (2012), pp. 388-401
[8] Micromorphic approach for gradient elasticity, viscoplasticity and damage, ASCE J. Eng. Mech., Volume 135 (2009), pp. 117-131
[9] A generalized continuum theory with internal corner and surface contact interactions, Contin. Mech. Thermodyn., Volume 28 (2016) no. 1, pp. 275-292 | DOI
[10] Determination of the closure of the set of elasticity functionals, Arch. Ration. Mech. Anal., Volume 170 (2003), pp. 211-245
[11] Cauchy tetrahedron argument applied to higher contact interactions, Arch. Ration. Mech. Anal., Volume 219 (2016) no. 3, pp. 1305-1341 | DOI
[12] A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium, Contin. Mech. Thermodyn., Volume 9 (1997), pp. 241-257
[13] Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients, Z. Angew. Math. Phys., Volume 66 (2015), pp. 3699-3725
[14] Elastic pantographic 2D lattices: a numerical analysis on the static response and wave propagation, Proc. Est. Acad. Sci., Eng., Volume 64 (2015), pp. 219-225
[15] Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps, Contin. Mech. Thermodyn., Volume 27 (2015), pp. 551-570
[16] A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices, Z. Angew. Math. Mech., Volume 94 (2014), pp. 862-877
[17] A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model, Contin. Mech. Thermodyn., Volume 28 (2016) no. 1, pp. 119-137 | DOI
[18] A variational approach for a nonlinear 1-dimensional second gradient continuum damage model, Contin. Mech. Thermodyn., Volume 27 (2015), pp. 623-638
[19] Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film, J. Nanomech. Micromech., Volume 1 (2011), pp. 60-71
[20] Dynamic problems for metamaterials: review of existing models and ideas for further research, Int. J. Eng. Sci., Volume 80 (2014), pp. 153-172
[21] Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence, Z. Angew. Math. Phys., Volume 66 (2015), pp. 3473-3498
[22] On the linear theory of micropolar plates, Z. Angew. Math. Mech., Volume 89 (2009), pp. 242-256
[23] Acceleration waves and ellipticity in thermoelastic micropolar media, Arch. Appl. Mech., Volume 80 (2010), pp. 217-227
[24] Cosserat-type shells, Generalized Continua from the Theory to Engineering Applications, CISM, vol. 541, 2013, pp. 131-178
[25] Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh, Composites, Part A, Appl. Sci. Manuf., Volume 81 (2016), pp. 145-157
[26] On free oscillations of an elastic solids with ordered arrays of nano-sized objects, Contin. Mech. Thermodyn., Volume 27 (2015), pp. 583-607
[27] Discrete models of woven structures. Macroscopic approach, Composites, Part B, Eng., Volume 38 (2007), pp. 498-505
[28] Equivalent mechanical properties of auxetic lattices from discrete homogenization, Comput. Mater. Sci., Volume 51 (2012), pp. 314-321
[29] Pattern formation in the three-dimensional deformations of fibered sheets, Mech. Res. Commun., Volume 69 (2015), pp. 164-171
[30] A two-dimensional gradient-elasticity theory for woven fabrics, J. Elast., Volume 18 (2015), pp. 113-125
[31] Necking and drawing in polymeric fibers under tension, Arch. Ration. Mech. Anal., Volume 83 (1983), pp. 115-137
[32] On the rheology of cold drawing: I. Elastic materials, J. Polym. Sci., Part B, Polym. Phys., Volume 26 (1988), pp. 1801-1822
[33] Equilibrium of elastic nets, Philos. Trans. R. Soc. Lond., Volume 335 (1991), pp. 419-454
[34] Net shape woven fabrics—2D and 3D, J. Ind. Text., Volume 30 (2000), pp. 15-25
[35] et al. Epidermal electronics, Science, Volume 333 (2011), pp. 838-843
[36] Synthesis of complex structures. Designing micro-structure to deliver targeted macro-scale response, Appl. Mech. Rev., Volume 67 (2016) | DOI
[37] Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal., Volume 41 (1981), pp. 135-174
[38] Injective weak solutions in second-gradient nonlinear elasticity, ESAIM Control Optim. Calc. Var., Volume 15 (2009), pp. 863-871
[39] A three-dimensional B-spline boundary element, Comput. Methods Appl. Mech. Eng., Volume 155 (1998), pp. 119-128
[40] On the C1 continuous discretization of non-linear gradient elasticity: a comparison of NEM and FEM based on Bernstein–Bézier patches, Int. J. Numer. Methods Eng., Volume 82 (2010), pp. 1282-1307
[41] Isogeometric analysis of 2D gradient elasticity, Comput. Mech., Volume 47 (2011), pp. 325-334
[42] An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod, Comput. Methods Appl. Mech. Eng., Volume 269 (2014), pp. 17-197
[43] An isogeometric implicit G1 mixed finite element for Kirchhoff space rods, Comput. Methods Appl. Mech. Eng., Volume 298 (2016), pp. 325-349
[44] Three-dimensional isogeometric solutions to general boundary value problems of Toupin's gradient elasticity theory at finite strains, Comput. Methods Appl. Mech. Eng., Volume 278 (2014), pp. 705-728
[45] Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches, Contin. Mech. Thermodyn., Volume 28 (2016), pp. 139-156
[46] Isogeometric analysis of plane-curved beams, Math. Mech. Solids (2014) | DOI
[47] Constitutive models for strongly curved beams in the frame of isogeometric analysis, Math. Mech. Solids, Volume 21 (2016), pp. 182-209
[48] Mode localization in dynamics and buckling of linear imperfect continuous structures, Nonlinear Dyn., Volume 25 (2001), pp. 133-156
[49] On the effect of twist angle on nonlinear galloping of suspended cables, Comput. Struct., Volume 87 (2009), pp. 1003-1014
[50] The effects of warping on the postbuckling behaviour of thin-walled structures, Thin-Walled Struct., Volume 49 (2011), pp. 1091-1097
[51] On the imperfection sensitivity of thin-walled frames, Civil-Comp Proceedings, vol. 99, 2012
[52] Initial postbuckling behavior of thin-walled frames under mode interaction, Thin-Walled Struct., Volume 68 (2013), pp. 124-134
Cited by Sources:
Comments - Policy