Comptes Rendus
Buckling modes in pantographic lattices
Comptes Rendus. Mécanique, Volume 344 (2016) no. 7, pp. 487-501.

We study buckling patterns in pantographic sheets, regarded as two-dimensional continua consisting of lattices of continuously distributed fibers. The fibers are modeled as beams endowed with elastic resistance to stretching, shearing, bending and twist. Included in the theory is a non-standard elasticity due to geodesic bending of the fibers relative to the lattice surface.

Nous étudions le flambage de milieux continus bidimensionnels. Ces milieux, que nous appelons « feuilles pantographiques », sont constitués par un réseau formé de deux familles orthogonales de fibres parallèles. Ces fibres sont considérées comme des poutres élastiques reliées entre elles à chaque intersection par une liaison pivot. Le modèle bidimensionnel continu utilisé généralise celui des plaques, puisqu'il prend en compte l'énergie élastique liée à la courbure des fibres dans le plan de la structure.

Published online:
DOI: 10.1016/j.crme.2016.02.009
Keywords: Pantographic structures, Buckling, Second gradient models, Geodesic bending, Non-linear elasticity
Mot clés : Structures pantographiques, Flambage, Milieux continus du second gradient, Flexion géodésique, Élasticité non linéaire

Ivan Giorgio 1, 2; Alessandro Della Corte 3, 2; Francesco dell'Isola 1, 2; David J. Steigmann 4, 2

1 Dipartimento di Ingegneria Strutturale e Geotecnica, Università di Roma La Sapienza, 00184 Roma, Italy
2 International Research Center for the Mathematics and Mechanics of Complex Systems, Università dell'Aquila, Italy
3 Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma La Sapienza, 00184 Roma, Italy
4 Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
     author = {Ivan Giorgio and Alessandro Della Corte and Francesco dell'Isola and David J. Steigmann},
     title = {Buckling modes in pantographic lattices},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {487--501},
     publisher = {Elsevier},
     volume = {344},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crme.2016.02.009},
     language = {en},
AU  - Ivan Giorgio
AU  - Alessandro Della Corte
AU  - Francesco dell'Isola
AU  - David J. Steigmann
TI  - Buckling modes in pantographic lattices
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 487
EP  - 501
VL  - 344
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2016.02.009
LA  - en
ID  - CRMECA_2016__344_7_487_0
ER  - 
%0 Journal Article
%A Ivan Giorgio
%A Alessandro Della Corte
%A Francesco dell'Isola
%A David J. Steigmann
%T Buckling modes in pantographic lattices
%J Comptes Rendus. Mécanique
%D 2016
%P 487-501
%V 344
%N 7
%I Elsevier
%R 10.1016/j.crme.2016.02.009
%G en
%F CRMECA_2016__344_7_487_0
Ivan Giorgio; Alessandro Della Corte; Francesco dell'Isola; David J. Steigmann. Buckling modes in pantographic lattices. Comptes Rendus. Mécanique, Volume 344 (2016) no. 7, pp. 487-501. doi : 10.1016/j.crme.2016.02.009.

[1] D.J. Steigmann; F. dell'Isola Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching, Acta Mech. Sin., Volume 31 (2015), pp. 373-382

[2] R.A. Toupin Theories of elasticity with couple stress, Arch. Ration. Mech. Anal., Volume 17 (1964), pp. 85-112

[3] R.D. Mindlin; H.F. Tiersten Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., Volume 11 (1962), pp. 415-448

[4] W.T. Koiter Couple-stresses in the theory of elasticity, Proc. K. Ned. Akad. Wet. B, Volume 67 (1964), pp. 17-44

[5] P. Germain The method of virtual power in continuum mechanics, part 2: microstructure, SIAM J. Appl. Math., Volume 25 (1973), pp. 556-575

[6] A. Grillo; S. Federico; G. Wittum; S. Imatani; G. Giaquinta; M.V. Mićunović Evolution of a fibre-reinforced growing mixture, Nuovo Cimento Soc. Ital. Fis. C, Volume 32 (2009), pp. 97-119

[7] A. Grillo; S. Federico; G. Wittum Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials, Int. J. Non-Linear Mech., Volume 47 (2012), pp. 388-401

[8] S. Forest Micromorphic approach for gradient elasticity, viscoplasticity and damage, ASCE J. Eng. Mech., Volume 135 (2009), pp. 117-131

[9] R. Fosdick A generalized continuum theory with internal corner and surface contact interactions, Contin. Mech. Thermodyn., Volume 28 (2016) no. 1, pp. 275-292 | DOI

[10] M. Camar-Eddine; P. Seppecher Determination of the closure of the set of elasticity functionals, Arch. Ration. Mech. Anal., Volume 170 (2003), pp. 211-245

[11] F. dell'Isola; A. Madeo; P. Seppecher Cauchy tetrahedron argument applied to higher contact interactions, Arch. Ration. Mech. Anal., Volume 219 (2016) no. 3, pp. 1305-1341 | DOI

[12] C. Pideri; P. Seppecher A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium, Contin. Mech. Thermodyn., Volume 9 (1997), pp. 241-257

[13] L. Placidi; U. Andreaus; A. Della Corte Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients, Z. Angew. Math. Phys., Volume 66 (2015), pp. 3699-3725

[14] F. dell'Isola; I. Giorgio; U. Andreaus Elastic pantographic 2D lattices: a numerical analysis on the static response and wave propagation, Proc. Est. Acad. Sci., Eng., Volume 64 (2015), pp. 219-225

[15] A. Madeo; P. Neff; I.D. Ghiba; L. Placidi; G. Rosi Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps, Contin. Mech. Thermodyn., Volume 27 (2015), pp. 551-570

[16] A. Rinaldi; L. Placidi A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices, Z. Angew. Math. Mech., Volume 94 (2014), pp. 862-877

[17] L. Placidi A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model, Contin. Mech. Thermodyn., Volume 28 (2016) no. 1, pp. 119-137 | DOI

[18] L. Placidi A variational approach for a nonlinear 1-dimensional second gradient continuum damage model, Contin. Mech. Thermodyn., Volume 27 (2015), pp. 623-638

[19] Y. Yang; W. Ching; A. Misra Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film, J. Nanomech. Micromech., Volume 1 (2011), pp. 60-71

[20] D. Del Vescovo; I. Giorgio Dynamic problems for metamaterials: review of existing models and ideas for further research, Int. J. Eng. Sci., Volume 80 (2014), pp. 153-172

[21] F. dell'Isola; T. Lekszycki; M. Pawlikowski; R. Grygoruk; L. Greco Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence, Z. Angew. Math. Phys., Volume 66 (2015), pp. 3473-3498

[22] H. Altenbach; V.A. Eremeyev On the linear theory of micropolar plates, Z. Angew. Math. Mech., Volume 89 (2009), pp. 242-256

[23] H. Altenbach; V.A. Eremeyev; L.P. Lebedev; L.A. Rendón Acceleration waves and ellipticity in thermoelastic micropolar media, Arch. Appl. Mech., Volume 80 (2010), pp. 217-227

[24] H. Altenbach; V.A. Eremeyev Cosserat-type shells, Generalized Continua from the Theory to Engineering Applications, CISM, vol. 541, 2013, pp. 131-178

[25] P. Harrison Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh, Composites, Part A, Appl. Sci. Manuf., Volume 81 (2016), pp. 145-157

[26] V.A. Eremeyev; E.A. Ivanova; N.F. Morozov On free oscillations of an elastic solids with ordered arrays of nano-sized objects, Contin. Mech. Thermodyn., Volume 27 (2015), pp. 583-607

[27] B.B. Boubaker; B. Haussy; J.F. Ganghoffer Discrete models of woven structures. Macroscopic approach, Composites, Part B, Eng., Volume 38 (2007), pp. 498-505

[28] F. Dos Reis; J.F. Ganghoffer Equivalent mechanical properties of auxetic lattices from discrete homogenization, Comput. Mater. Sci., Volume 51 (2012), pp. 314-321

[29] I. Giorgio; R. Grygoruk; F. dell'Isola; D.J. Steigmann Pattern formation in the three-dimensional deformations of fibered sheets, Mech. Res. Commun., Volume 69 (2015), pp. 164-171

[30] F. dell'Isola; D.J. Steigmann A two-dimensional gradient-elasticity theory for woven fabrics, J. Elast., Volume 18 (2015), pp. 113-125

[31] B.D. Coleman Necking and drawing in polymeric fibers under tension, Arch. Ration. Mech. Anal., Volume 83 (1983), pp. 115-137

[32] B.D. Coleman; D.C. Newman On the rheology of cold drawing: I. Elastic materials, J. Polym. Sci., Part B, Polym. Phys., Volume 26 (1988), pp. 1801-1822

[33] D.J. Steigmann; A.C. Pipkin Equilibrium of elastic nets, Philos. Trans. R. Soc. Lond., Volume 335 (1991), pp. 419-454

[34] S.R. Clarke Net shape woven fabrics—2D and 3D, J. Ind. Text., Volume 30 (2000), pp. 15-25

[35] D.H. Kim; N. Lu; R. Ma; Y.S. Kim; R.H. Kim; S. Wang; J. Wu; S.M. Won; H. Tao; A. Islam et al. Epidermal electronics, Science, Volume 333 (2011), pp. 838-843

[36] F. dell'Isola; D. Steigmann; A. Della Corte Synthesis of complex structures. Designing micro-structure to deliver targeted macro-scale response, Appl. Mech. Rev., Volume 67 (2016) | DOI

[37] J.M. Ball; J.C. Currie; P.J. Olver Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal., Volume 41 (1981), pp. 135-174

[38] T.J. Healey; S. Krömer Injective weak solutions in second-gradient nonlinear elasticity, ESAIM Control Optim. Calc. Var., Volume 15 (2009), pp. 863-871

[39] E. Turco; M. Aristodemo A three-dimensional B-spline boundary element, Comput. Methods Appl. Mech. Eng., Volume 155 (1998), pp. 119-128

[40] P. Fischer; J. Mergheim; P. Steinmann On the C1 continuous discretization of non-linear gradient elasticity: a comparison of NEM and FEM based on Bernstein–Bézier patches, Int. J. Numer. Methods Eng., Volume 82 (2010), pp. 1282-1307

[41] P. Fischer; M. Klassen; J. Mergheim; P. Steinmann; R. Müller Isogeometric analysis of 2D gradient elasticity, Comput. Mech., Volume 47 (2011), pp. 325-334

[42] L. Greco; M. Cuomo An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod, Comput. Methods Appl. Mech. Eng., Volume 269 (2014), pp. 17-197

[43] L. Greco; M. Cuomo An isogeometric implicit G1 mixed finite element for Kirchhoff space rods, Comput. Methods Appl. Mech. Eng., Volume 298 (2016), pp. 325-349

[44] S. Rudrarajua; A. Van der Venb; K. Garikipati Three-dimensional isogeometric solutions to general boundary value problems of Toupin's gradient elasticity theory at finite strains, Comput. Methods Appl. Mech. Eng., Volume 278 (2014), pp. 705-728

[45] A. Cazzani; M. Malagù; E. Turco Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches, Contin. Mech. Thermodyn., Volume 28 (2016), pp. 139-156

[46] A. Cazzani; M. Malagù; E. Turco Isogeometric analysis of plane-curved beams, Math. Mech. Solids (2014) | DOI

[47] A. Cazzani; M. Malagù; E. Turco; F. Stochino Constitutive models for strongly curved beams in the frame of isogeometric analysis, Math. Mech. Solids, Volume 21 (2016), pp. 182-209

[48] A. Luongo Mode localization in dynamics and buckling of linear imperfect continuous structures, Nonlinear Dyn., Volume 25 (2001), pp. 133-156

[49] A. Luongo; D. Zulli; G. Piccardo On the effect of twist angle on nonlinear galloping of suspended cables, Comput. Struct., Volume 87 (2009), pp. 1003-1014

[50] N.L. Rizzi; V. Varano The effects of warping on the postbuckling behaviour of thin-walled structures, Thin-Walled Struct., Volume 49 (2011), pp. 1091-1097

[51] S. Gabriele; N.L. Rizzi; V. Varano On the imperfection sensitivity of thin-walled frames, Civil-Comp Proceedings, vol. 99, 2012

[52] N.L. Rizzi; V. Varano; S. Gabriele Initial postbuckling behavior of thin-walled frames under mode interaction, Thin-Walled Struct., Volume 68 (2013), pp. 124-134

Cited by Sources:

Comments - Policy