The main contribution of this paper is the derivation of spatiotemporal Liénard-type models for expressing the dynamical behavior of a fluid transmission line. The derivation is carried out from a quasilinear hyperbolic system made of a momentum equation and a continuity one. An advantage of these types of models is that they are suitable for formulating estimation algorithms. This claim is confirmed in the present paper for the case of fluid dynamics, since the article presents the conception and evaluation of a Liénard model-based observer that estimates the parameters of a pipeline such as the friction factor, the equivalent length and the wave speed. To show the potentiality of the approach, results based on some simulation and experimental tests are presented.
Supplementary Materials:
Supplementary materials for this article are supplied as separate files:
Cet article envisage principalement la dérivation de modèles de type Liénard pour exprimer le comportement dynamique d'une ligne de transmission de fluides. Le calcul est effectué à partir d'un système hyperbolique quasi linéaire constitué d'une équation de quantité de mouvement et d'une équation de continuité. Dans des études précédentes, il a été montré que transformer les systèmes régis par une équation différentielle de type dans la forme de Liénard peut s'avérer utile à la conception d'algorithmes d'estimation. Cette affirmation est confirmée dans cet article pour le cas des fluides, car la conception et l'évaluation d'un observateur basé sur un modèle de type Liénard, estimant les paramètres d'une canalisation, y sont présentées. L'approche est illustrée par des résultats de tests en simulation et expérimentaux.
Compléments :
Des compléments sont fournis pour cet article dans les fichiers suivants :
Accepted:
Published online:
Mots-clés : Canalisations, Dynamique des fluides, Équation de Liénard, Observateurs d'états, Identification de paramètres
Lizeth Torres 1, 2; Jorge Alejandro Delgado Aguiñaga 3; Gildas Besançon 4, 5; Cristina Verde 1; Ofelia Begovich 3
@article{CRMECA_2016__344_8_582_0, author = {Lizeth Torres and Jorge Alejandro Delgado Agui\~naga and Gildas Besan\c{c}on and Cristina Verde and Ofelia Begovich}, title = {Equivalent {Li\'enard-type} models for a fluid transmission line}, journal = {Comptes Rendus. M\'ecanique}, pages = {582--595}, publisher = {Elsevier}, volume = {344}, number = {8}, year = {2016}, doi = {10.1016/j.crme.2016.04.004}, language = {en}, }
TY - JOUR AU - Lizeth Torres AU - Jorge Alejandro Delgado Aguiñaga AU - Gildas Besançon AU - Cristina Verde AU - Ofelia Begovich TI - Equivalent Liénard-type models for a fluid transmission line JO - Comptes Rendus. Mécanique PY - 2016 SP - 582 EP - 595 VL - 344 IS - 8 PB - Elsevier DO - 10.1016/j.crme.2016.04.004 LA - en ID - CRMECA_2016__344_8_582_0 ER -
%0 Journal Article %A Lizeth Torres %A Jorge Alejandro Delgado Aguiñaga %A Gildas Besançon %A Cristina Verde %A Ofelia Begovich %T Equivalent Liénard-type models for a fluid transmission line %J Comptes Rendus. Mécanique %D 2016 %P 582-595 %V 344 %N 8 %I Elsevier %R 10.1016/j.crme.2016.04.004 %G en %F CRMECA_2016__344_8_582_0
Lizeth Torres; Jorge Alejandro Delgado Aguiñaga; Gildas Besançon; Cristina Verde; Ofelia Begovich. Equivalent Liénard-type models for a fluid transmission line. Comptes Rendus. Mécanique, Volume 344 (2016) no. 8, pp. 582-595. doi : 10.1016/j.crme.2016.04.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.04.004/
[1] Liénard type model of fluid flow in pipelines: application to estimation, Mexico City, Mexico, IEEE (2015), pp. 148-153
[2] Pipeline system identification through cross-correlation analysis, Proc. Inst. Mech. Eng., E J. Process Mech. Eng., Volume 216 (2002) no. 3, pp. 133-142
[3] Leak location using blind system identification in water distribution pipelines, J. Sound Vib., Volume 310 (2008) no. 1, pp. 134-148
[4] Parameter identification of fluid line networks by frequency-domain maximum likelihood estimation, Mech. Syst. Signal Process., Volume 37 (2013) no. 1, pp. 370-387
[5] PI-controlled bioreactor as a generalized Liénard system, Comput. Chem. Eng., Volume 31 (2007) no. 3, pp. 136-141
[6] The heartbeat considered as a relaxation oscillation, and an electrical model of the heart, Philos. Mag. Ser. 7, Volume 6 (1928) no. 38, pp. 763-775
[7] Liénard-type equations and the epidemiology of malaria, Ecol. Model., Volume 60 (1992) no. 2, pp. 139-150
[8] An active pulse transmission line simulating nerve axon, Proc. IRE, Volume 50 (1962) no. 10, pp. 2061-2070
[9] Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., Volume 1 (1961) no. 6, pp. 445-466
[10] A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., Volume 117 (1952) no. 4, pp. 500-544
[11] Limit cycles in a continuous fermentation model, J. Math. Chem., Volume 5 (1990) no. 3, pp. 287-296
[12] Phase portraits and bifurcations of the nonlinear oscillator: , Int. J. Non-Linear Mech., Volume 15 (1980) no. 6, pp. 449-458
[13] A survey of recent applications of fixed point theory to periodic solutions of the Liénard equation, Fixed Point Theory and Its Applications, vol. 72, American Mathematical Society, Providence, RI, USA, 1988, pp. 171-178
[14] Limit cycles in generalized Liénard systems, Chaos Solitons Fractals, Volume 30 (2006) no. 5, pp. 1048-1068
[15] Liénard systems and the second part of Hilbert's Sixteenth problem, Nonlinear Anal., Volume 30 (1997) no. 3, pp. 1395-1403
[16] A Liénard oscillator resonant tunnelling diode–laser diode hybrid integrated circuit: model and experiment, IEEE J. Quantum Electron., Volume 44 (2008) no. 12, pp. 1158-1163
[17] Periodic signal modeling based on Liénard's equation, IEEE Trans. Autom. Control, Volume 49 (2004) no. 10, pp. 1773-1781
[18] Étude des oscillations entretenues, Rev. Gén. Électr., Volume 23 (1928), pp. 901-954
[19] Observer-based parameter estimation in Liénard systems, ALCOSP 2010, Anatolia, Turkey (2010)
[20] A note on state and parameter estimation in a Van der Pol oscillator, Automatica, Volume 46 (2010), pp. 1735-1738
[21] Applied Hydraulic Transients, Van Nostrand Reinhold, New York, 1979
[22] Nonlinear Observers and Applications, Springer, 2007
[23] Observer synthesis for a class of nonlinear control systems, Eur. J. Control, Volume 2 (1996), pp. 176-192
[24] Hydraulic Engineering, Wiley, New York, 1998
[25] Calibration of fitting loss coefficients for modelling purpose of a plastic pipeline, Proc. 16th Conference on Emerging Technologies & Factory Automation (ETFA), IEEE, 2011, pp. 1-6
[26] Multi-leak diagnosis in pipelines based on extended Kalman filter, Control Eng. Pract., Volume 49 (2016), pp. 139-148
[27] Uniform robust exact differentiator, IEEE Trans. Autom. Control, Volume 56 (2011) no. 11, pp. 2727-2733
[28] Explicit equations for pipe-flow problems, J. Hydraul. Div., Volume 102 (1976) no. 5, pp. 657-664
[29] Mecánica de Fluidos Y Máquinas Hidráulicas, El Castillo, 1986
Cited by Sources:
Comments - Policy