We study wave propagation in an elastic porous medium saturated with a compressible Newtonian fluid. The porous network is interconnected whereby the pores are characterized by two very different characteristic sizes. At the mesoscopic scale, the medium is described using the Biot model, characterized by a high contrast in the hydraulic permeability and anisotropic elasticity, whereas the contrast in the Biot coupling coefficient is only moderate. Fluid motion is governed by the Darcy flow model extended by inertia terms and by the mass conservation equation. The homogenization method based on the asymptotic analysis is used to obtain a macroscopic model. To respect the high contrast in the material properties, they are scaled by the small parameter, which is involved in the asymptotic analysis and characterized by the size of the heterogeneities. Using the estimates of wavelengths in the double-porosity networks, it is shown that the macroscopic descriptions depend on the contrast in the static permeability associated with pores and micropores and on the frequency. Moreover, the microflow in the double porosity is responsible for fading memory effects via the macroscopic poroviscoelastic constitutive law.
Nous étudions la propagation des ondes dans un milieu poreux élastique dont le réseau poreux est interconnecté et saturé par un fluide newtonien compressible. On suppose que la taille caractéristique des micropores est très hétérogène dans le réseau poreux. Le milieu est caractérisé par un contraste élevé de perméabilités et d'élasticités anisotropes et par un contraste modéré pour le coefficient de couplage de Biot. À l'échelle mésoscopique, le mouvement du fluide est régi par le modèle d'écoulement de Darcy étendu avec des termes d'inertie et par l'équation de conservation de la masse. Le matrice poreuse est décrite en utilisant le modèle de Biot. La méthode d'homogénéisation via l'analyse asymptotique à double échelle est utilisée pour obtenir un modèle macroscopique pour des contrastes élevés de perméabilité et d'élasticité anisotrope, mais avec des contrastes modérés du coefficient de couplage de Biot, lesquels ont été mis à l'échelle par rapport à la taille des hétérogénéités. À partir de l'estimation des longueurs d'onde dans les deux réseaux, il est montré que, non seulement la description macroscopique dépend du contraste de perméabilité statique entre les pores et micropores et de la fréquence, mais aussi que la double porosité est responsable des effets de mémoire via la loi de comportement poroviscoélastique.
Accepted:
Published online:
Mots-clés : Poroélasticité, Homogénéisation asymptotique, Double porosité, Propagation d'ondes, Propriétés effectives
Eduard Rohan 1; Salah Naili 2; Vu-Hieu Nguyen 2
@article{CRMECA_2016__344_8_569_0, author = {Eduard Rohan and Salah Naili and Vu-Hieu Nguyen}, title = {Wave propagation in a strongly heterogeneous elastic porous medium: {Homogenization} of {Biot} medium with double porosities}, journal = {Comptes Rendus. M\'ecanique}, pages = {569--581}, publisher = {Elsevier}, volume = {344}, number = {8}, year = {2016}, doi = {10.1016/j.crme.2016.05.001}, language = {en}, }
TY - JOUR AU - Eduard Rohan AU - Salah Naili AU - Vu-Hieu Nguyen TI - Wave propagation in a strongly heterogeneous elastic porous medium: Homogenization of Biot medium with double porosities JO - Comptes Rendus. Mécanique PY - 2016 SP - 569 EP - 581 VL - 344 IS - 8 PB - Elsevier DO - 10.1016/j.crme.2016.05.001 LA - en ID - CRMECA_2016__344_8_569_0 ER -
%0 Journal Article %A Eduard Rohan %A Salah Naili %A Vu-Hieu Nguyen %T Wave propagation in a strongly heterogeneous elastic porous medium: Homogenization of Biot medium with double porosities %J Comptes Rendus. Mécanique %D 2016 %P 569-581 %V 344 %N 8 %I Elsevier %R 10.1016/j.crme.2016.05.001 %G en %F CRMECA_2016__344_8_569_0
Eduard Rohan; Salah Naili; Vu-Hieu Nguyen. Wave propagation in a strongly heterogeneous elastic porous medium: Homogenization of Biot medium with double porosities. Comptes Rendus. Mécanique, Volume 344 (2016) no. 8, pp. 569-581. doi : 10.1016/j.crme.2016.05.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.05.001/
[1] Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, PMM – Sov. Appl. Math. Mech., Volume 24 (1960) no. 5, pp. 852-864
[2] On the theory of consolidation with double porosity, Int. J. Eng. Sci., Volume 20 (1982) no. 3, pp. 1009-1035
[3] Deformable porous media with double porosity. Quasi statics. I. Coupling effects, Transp. Porous Media, Volume 7 (1982) no. 1, pp. 63-82
[4] Deformable porous media with double porosity. Quasi statics. II. Memory effects, Transp. Porous Media, Volume 10 (1993) no. 2, pp. 153-169
[5] Deformable porous media with double porosity III. Acoustics, Transp. Porous Media, Volume 14 (1994), pp. 143-162
[6] Elastic wave propagation and attenuation in a double-porosity dual-permeability medium, Int. J. Rock Mech. Min. Sci., Volume 37 (2000), pp. 63-78
[7] Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation, Phys. Rev. E, Volume 68 (2003)
[8] Linear dynamics of double-porosity dual-permeability materials. II. Fluid transport equations, Phys. Rev. E, Volume 68 (2003)
[9] Biot–Rayleigh theory of wave propagation in double-porosity media, J. Geophys. Res., Volume 116 (2011) | DOI
[10] Homogenization of acoustic waves in strongly heterogeneous porous structures, Wave Motion, Volume 50 (2013), pp. 1073-1089
[11] Asymptotic Methods in Periodic Media, North-Holland, 1978
[12] Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127, Springer, Berlin, 1980
[13] An Introduction to Homogenization, Oxford Lecture Series in Mathematics and Its Applications, vol. 17, Oxford University Press, New York, 1999
[14] Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992), pp. 1482-1518
[15] The periodic unfolding method in homogenization, SIAM J. Math. Anal., Volume 40 (2008) no. 4, pp. 1585-1620
[16] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2010
[17] Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range, J. Acoust. Soc. Amer., Volume 28 (1956) no. 2, pp. 168-178
[18] Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher-frequency range, J. Acoust. Soc. Amer., Volume 28 (1956) no. 2, pp. 179-191
[19] Dynamics of porous saturated media, checking of the generalized law of Darcy, J. Acoust. Soc. Amer., Volume 77 (1985) no. 5, pp. 1641-1650
[20] On the viscodynamic operator in Biot's equations of poroelasticity, J. Wave-Mater. Int., Volume 1 (1986), pp. 365-380
[21] Multiscale simulation of acoustic waves in homogenized strongly heterogeneous porous media, Int. J. Eng. Sci., Volume 101 (2016), pp. 92-109
[22] Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., Volume 21 (1990), pp. 823-836
[23] Multiscale modeling of a fluid saturated medium with double porosity: Relevance to the compact bone, J. Mech. Phys. Solids, Volume 60 (2012), pp. 857-881
[24] Multiscale modeling of elastic waves: theoretical justification and numerical simulation of band gaps, Multiscale Model. Simul., Volume 7 (2008), pp. 1-21
[25] Numerical simulation of acoustic band gaps in homogenized elastic composites, Int. J. Eng. Sci., Volume 47 (2009), pp. 573-594
[26] Band gaps and vibration of strongly heterogeneous Reissner–Mindlin elastic plates, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 777-781
[27] Propagation and localization of elastic waves in highly anisotropic periodic composites via two-scale homogenization, Mech. Mater., Volume 41 (2009), pp. 434-447
[28] Periodic unfolding and homogenization, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 99-104
[29] Double porosity in fluid-saturated elastic media: deriving effective parameters by hierarchical homogenization of static problem, Contin. Mech. Thermodyn. (2016) (in press) | DOI
[30] Homogenization of elastic waves in fluid-saturated porous media using the Biot model, Math. Models Methods Appl. Sci., Volume 23 (2013), pp. 873-916
[31] Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO. Anal. Numér., Volume 3 (1973), pp. 33-75
[32] A stable finite element for the Stokes equations, Calcolo, Volume 21 (1984) no. 4, pp. 337-344
[33] Wave propagation in strongly heterogeneous fluid saturated porous medium: asymptotic analysis and computational issues, SEMC 2016 (2016)
Cited by Sources:
Comments - Policy