Modeling dispersed solid phases in fluids still represents a computational challenge when considering a small-scale coupling in wide systems, such as the atmosphere or industrial processes at high Reynolds numbers. A numerical method is here introduced for simulating the dynamics of diffusive heavy inertial particles in turbulent flows. The approach is based on the position/velocity phase–space particle distribution. The discretization of velocities is inspired from lattice Boltzmann methods and is chosen to match discrete displacements between two time steps. For each spatial position, the time evolution of particles momentum is approximated by a finite-volume approach. The proposed method is tested for particles experiencing a Stokes viscous drag with a prescribed fluid velocity field in one dimension using a random flow, and in two dimensions with the solution to the forced incompressible Navier–Stokes equations. Results show good agreements between Lagrangian and Eulerian dynamics for both spatial clustering and the dispersion in particle velocities. In particular, the proposed method, in contrast to hydrodynamical Eulerian descriptions of the dispersed phase, is able to reproduce fine particle kinetic phenomena, such as caustic formation or trajectory crossings. This indicates the suitability of this approach at large Stokes numbers for situations where details of collision processes are important.
La modélisation de particules solides dispersées dans un fluide reste actuellement un défi numérique, surtout lorsqu'il y a une grande séparation d'échelles entre le couplage et l'écoulement, comme par exemple dans l'atmosphère ou les écoulements industriels à grand nombre de Reynolds. Une méthode numérique est ici présentée dans le but de simuler la dynamique de particules lourdes diffusives dans des écoulements turbulents. L'approche est basée sur la distribution des particules dans l'espace des phases positions–vitesses. La discrétisation en vitesses s'inspire de la méthode de Boltzmann sur réseau et est choisie de telle manière à ce qu'elle corresponde à des déplacements discrets entre deux pas de temps. Pour chaque position spatiale, l'évolution temporelle de la quantité de mouvement est résolue par une approche de volumes finis. La méthode proposée est testée pour des particules soumises à un frottement visqueux de Stokes, avec des écoulements aléatoires en une dimension, et avec des solutions de l'équation de Navier–Stokes incompressible forcée en deux dimensions. Les résultats montrent un bon accord entre les simulations lagrangiennes et eulériennes pour reproduire les concentrations préférentielles et la dispersion des vitesses des particules. De plus, la méthode proposée, contrairement à des descriptions hydrodynamiques des suspensions, permet de résoudre le croisement de trajectoires et la formation de caustiques, ce qui montre sa pertinence aux grands nombres de Stokes pour les situations où les détails des processus de collision sont importants.
Accepted:
Published online:
Mots-clés : Écoulements dispersés, Particules en turbulence, Modélisation eulérienne, Méthodes sur réseau
François Laenen 1; Giorgio Krstulovic 1; Jérémie Bec 1
@article{CRMECA_2016__344_9_672_0, author = {Fran\c{c}ois Laenen and Giorgio Krstulovic and J\'er\'emie Bec}, title = {A lattice method for the {Eulerian} simulation of heavy particle suspensions}, journal = {Comptes Rendus. M\'ecanique}, pages = {672--683}, publisher = {Elsevier}, volume = {344}, number = {9}, year = {2016}, doi = {10.1016/j.crme.2016.05.004}, language = {en}, }
TY - JOUR AU - François Laenen AU - Giorgio Krstulovic AU - Jérémie Bec TI - A lattice method for the Eulerian simulation of heavy particle suspensions JO - Comptes Rendus. Mécanique PY - 2016 SP - 672 EP - 683 VL - 344 IS - 9 PB - Elsevier DO - 10.1016/j.crme.2016.05.004 LA - en ID - CRMECA_2016__344_9_672_0 ER -
François Laenen; Giorgio Krstulovic; Jérémie Bec. A lattice method for the Eulerian simulation of heavy particle suspensions. Comptes Rendus. Mécanique, Volume 344 (2016) no. 9, pp. 672-683. doi : 10.1016/j.crme.2016.05.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.05.004/
[1] Lagrangian properties of particles in turbulence, Annu. Rev. Fluid Mech., Volume 41 (2009), pp. 375-404
[2] Turbulent dispersed multiphase flow, Annu. Rev. Fluid Mech., Volume 42 (2010), pp. 111-133
[3] Large eddy simulation of particle-laden turbulent channel flow, Phys. Fluids, Volume 8 (1996) no. 5, pp. 1207-1223
[4] A stochastic model for particle motion in large-eddy simulation, J. Turbul., Volume 7 (2006) no. 18 | DOI
[5] Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion, Int. J. Multiph. Flow, Volume 35 (2009) no. 2, pp. 118-128
[6] The super-droplet method for the numerical simulation of clouds and precipitation: a particle-based and probabilistic microphysics model coupled with a non-hydrostatic model, Q. J. R. Meteorol. Soc., Volume 135 (2009) no. 642, pp. 1307-1320
[7] The validity of the super-particle approximation during planetesimal formation, Astron. Astrophys., Volume 511 (2010)
[8] Possibilities and limitations of computer simulations of industrial turbulent dispersed multiphase flows, Flow Turbul. Combust., Volume 77 (2006) no. 1–4, pp. 381-403
[9] Large-eddy-simulation tools for multiphase flows, Annu. Rev. Fluid Mech., Volume 44 (2012), pp. 47-76
[10] Modeling of gas and solid particles 2-phase flow and application to fluidized-bed, J. Méc. Théor. Appl., Volume 6 (1987) no. 1, pp. 77-88
[11] On a kinetic equation for the transport of particles in turbulent flows, Phys. Fluids A, Volume 3 (1991) no. 3, pp. 446-456
[12] Lattice Boltzmann model for predicting the deposition of inertial particles transported by a turbulent flow, Int. J. Multiph. Flow, Volume 76 (2015), pp. 187-197
[13] Simulation of fluid and particles flows: asymptotic preserving schemes for bubbling and flowing regimes, J. Comput. Phys., Volume 227 (2008) no. 16, pp. 7929-7951
[14] The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields, J. Fluid Mech., Volume 174 (1987), pp. 441-465
[15] A Eulerian model for large-eddy simulation of concentration of particles with small Stokes numbers, Phys. Fluids, Volume 19 (2007) no. 11, p. 118107
[16] Heavy particle dispersion in inhomogeneous, anisotropic, turbulent flows, Int. J. Multiph. Flow, Volume 26 (2000) no. 4, pp. 635-661
[17] Acceleration of rain initiation by cloud turbulence, Nature, Volume 419 (2002) no. 6903, pp. 151-154
[18] Caustics in turbulent aerosols, Europhys. Lett., Volume 71 (2005) no. 2, p. 186
[19] Clustering and collisions of heavy particles in random smooth flows, Phys. Fluids, Volume 17 (2005) no. 7
[20] Partitioning of particle velocities in gas–solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study, J. Fluid Mech., Volume 533 (2005), pp. 1-46
[21] A quadrature-based moment method for dilute fluid-particle flows, J. Comput. Phys., Volume 227 (2008) no. 4, pp. 2514-2539
[22] A level set approach for dilute non-collisional fluid-particle flows, J. Comput. Phys., Volume 230 (2011) no. 4, pp. 920-936
[23] Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., Volume 30 (1998) no. 1, pp. 329-364
[24] Finite Volume Methods for Hyperbolic Problems, Cambridge Univ. Press, 2002
[25] The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, USA, 2001
[26] et al. A positive finite-difference advection scheme, J. Comput. Phys., Volume 117 (1995) no. 1, pp. 35-46
[27] A robust upwind discretization method for advection, diffusion and source terms, Centrum voor Wiskunde en Informatica Amsterdam, 1993
[28] Collision rates of small particles in a vigorously turbulent fluid, Chem. Eng. Sci., Volume 30 (1975) no. 11, pp. 1371-1379
[29] The infinite number of generalized dimensions of fractals and strange attractors, Physica D, Volume 8 (1983) no. 3, pp. 435-444
[30] Fractal clustering of inertial particles in random flows, Phys. Fluids, Volume 15 (2003) no. 11, p. L81-L84
[31] Path coalescence transition and its applications, Phys. Rev. E, Volume 68 (2003) no. 4
[32] Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations, J. Fluid Mech., Volume 335 (1997), pp. 75-109
[33] Gravitational settling of aerosol particles in randomly oriented cellular flow fields, J. Atmos. Sci., Volume 43 (1986) no. 11, pp. 1112-1134 | DOI
[34] The motion of solid spherical particles falling in a cellular flow field at low Stokes number, Phys. Fluids, Volume 26 (2014) no. 9
[35] Two-dimensional turbulence, Annu. Rev. Fluid Mech., Volume 44 (2012), pp. 427-451
[36] Large scale inhomogeneity of inertial particles in turbulent flows, Phys. Fluids, Volume 16 (2004) no. 4, p. L20-L23
[37] Turbulent clustering of stagnation points and inertial particles, J. Fluid Mech., Volume 553 (2006), pp. 143-154
[38] Analysis and modeling of subgrid scalar mixing using numerical data, Phys. Fluids, Volume 8 (1996) no. 5, pp. 1224-1236
Cited by Sources:
Comments - Policy