A one-dimensional model of an elastic junction that contains hard- and readily-movable thin rods is derived, and asymptotic formulas for eigenvalues with rigorous estimates for remainders are given. In addition to vector functions satisfying classical ordinary differential equations, the model involves algebraic unknowns and algebraic relations corresponding to the longitudinal rigid motion of readily-movable rods.
Nous obtenons un modèle 1D d'une jonction élastique qui contient des barres dures fines facilement déplaçables, et nous donnons un développement asymptotique des valeurs propres justifié par des estimations d'erreur rigoureuses. En plus de fonctions vectorielles satisfaisant des équations différentielles ordinaires, le modèle met en jeu des inconnues et des relations algébriques correspondant au mouvement rigide longitudinal des barres.
Accepted:
Published online:
Mots-clés : Jonction élastique de barres fines, Barres dures déplaçables, Oscillations libres, Analyse asymptotique, Réduction de dimension
Sergei A. Nazarov 1, 2, 3; Andrey S. Slutskij 1, 3
@article{CRMECA_2016__344_9_684_0, author = {Sergei A. Nazarov and Andrey S. Slutskij}, title = {Asymptotics of natural oscillations of a spatial junction of thin elastic rods}, journal = {Comptes Rendus. M\'ecanique}, pages = {684--688}, publisher = {Elsevier}, volume = {344}, number = {9}, year = {2016}, doi = {10.1016/j.crme.2016.04.001}, language = {en}, }
TY - JOUR AU - Sergei A. Nazarov AU - Andrey S. Slutskij TI - Asymptotics of natural oscillations of a spatial junction of thin elastic rods JO - Comptes Rendus. Mécanique PY - 2016 SP - 684 EP - 688 VL - 344 IS - 9 PB - Elsevier DO - 10.1016/j.crme.2016.04.001 LA - en ID - CRMECA_2016__344_9_684_0 ER -
Sergei A. Nazarov; Andrey S. Slutskij. Asymptotics of natural oscillations of a spatial junction of thin elastic rods. Comptes Rendus. Mécanique, Volume 344 (2016) no. 9, pp. 684-688. doi : 10.1016/j.crme.2016.04.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.04.001/
[1] C. R. Acad. Sci. Paris, Ser. II, 312 (1991) no. 4, pp. 337-344
[2] Introduction aux méthodes asymptotiques et à l'homogénéisation, Masson, Paris, 1992
[3] Asymptotic Theory of Thin Plates and Rods. Vol. 1. Dimension Reduction and Integral Estimates, Nauchnaya Kniga, Novosibirsk, 2002 (in Russian)
[4] Multi-Scale Modelling for Structures and Composites, Springer, 2005
[5] J. Math. Pures Appl., 68 (1989), pp. 365-397
[6] Proc. Steklov Inst. Math., 236 (2002) no. 1, pp. 222-249
[7] Transl. Amer. Math. Soc., Ser. 2, 214 (2005), pp. 59-108
[8] Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, Bd. 1, Akademie-Verlag, Berlin, 1991 (Bd. 2, 1991)
[9] Asymptotic Analysis of Fields in Multi-Structures, Oxford University Press, Oxford, UK, 1999
[10] Non-homogeneous Boundary Value Problems and Applications, Springer, Berlin, 1972
[11] Sib. Math. J., 43 (2002) no. 6, pp. 1069-1079
[12] J. Math. Sci., 114 (2003) no. 5, pp. 1657-1725
[13] C. R. Mecanique, 330 (2002), pp. 603-607
Cited by Sources:
☆ The work was supported by St.-Petersburg University, grant 0.38.237.2014, and Russian Foundation of Basic Research, grant 15-01-02175.
Comments - Policy