Comptes Rendus
Basic and applied researches in microgravity/Recherches fondamentales et appliquées en microgravité
Thermal convection in a cylindrical annulus under a combined effect of the radial and vertical gravity
Comptes Rendus. Mécanique, Volume 345 (2017) no. 1, pp. 11-20.

The stability of the flow of a dielectric fluid confined in a cylindrical annulus submitted to a radial temperature gradient and a radial electric field is investigated theoretically and experimentally. The radial temperature gradient induces a vertical Archimedean buoyancy and a radial dielectrophoretic buoyancy. These two forces intervene simultaneously in the destabilization of the flow, leading to the occurrence of four types of modes depending on the relative intensity of these two buoyancies and on the fluid's properties: hydrodynamic and thermal modes that are axisymmetric and oscillatory, stationary columnar modes and electric modes which are stationary and non-axisymmetric modes. Experiments performed in a parabolic flight show the existence of non-axisymmetric modes that should be either columnar or helicoidal vortices.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2016.10.003
Mots clés : Thermal convection, Cylindrical annulus, Dielectrophoretic buoyancy, Electric gravity, Thermal modes, Electric modes, Columnar modes, Microgravity, Parabolic flight experiment
Antoine Meyer 1 ; Marcel Jongmanns 2 ; Martin Meier 2 ; Christoph Egbers 2 ; Innocent Mutabazi 1

1 Laboratoire “Ondes et milieux complexes”, UMR 6294 CNRS – Université, Le Havre Normandie, 53, rue de Prony, BP 540, 76058 Le Havre cedex, France
2 Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg, Siemens-Halske-Ring 14, 03046 Cottbus, Germany
@article{CRMECA_2017__345_1_11_0,
     author = {Antoine Meyer and Marcel Jongmanns and Martin Meier and Christoph Egbers and Innocent Mutabazi},
     title = {Thermal convection in a cylindrical annulus under a combined effect of the radial and vertical gravity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {11--20},
     publisher = {Elsevier},
     volume = {345},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crme.2016.10.003},
     language = {en},
}
TY  - JOUR
AU  - Antoine Meyer
AU  - Marcel Jongmanns
AU  - Martin Meier
AU  - Christoph Egbers
AU  - Innocent Mutabazi
TI  - Thermal convection in a cylindrical annulus under a combined effect of the radial and vertical gravity
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 11
EP  - 20
VL  - 345
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2016.10.003
LA  - en
ID  - CRMECA_2017__345_1_11_0
ER  - 
%0 Journal Article
%A Antoine Meyer
%A Marcel Jongmanns
%A Martin Meier
%A Christoph Egbers
%A Innocent Mutabazi
%T Thermal convection in a cylindrical annulus under a combined effect of the radial and vertical gravity
%J Comptes Rendus. Mécanique
%D 2017
%P 11-20
%V 345
%N 1
%I Elsevier
%R 10.1016/j.crme.2016.10.003
%G en
%F CRMECA_2017__345_1_11_0
Antoine Meyer; Marcel Jongmanns; Martin Meier; Christoph Egbers; Innocent Mutabazi. Thermal convection in a cylindrical annulus under a combined effect of the radial and vertical gravity. Comptes Rendus. Mécanique, Volume 345 (2017) no. 1, pp. 11-20. doi : 10.1016/j.crme.2016.10.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.10.003/

[1] R.J. Turnbull Effect of dielectrophoretic force on the Bénard instability, Phys. Fluids, Volume 12 (1969), p. 1809

[2] H.N. Yoshikawa; O. Crumeyrolle; I. Mutabazi Dielectrophoretic force-driven thermal convection in annular geometry, Phys. Fluids, Volume 25 (2013)

[3] B. Chandra; D.E. Smylie A laboratory model of thermal convection under a central force field, Geophys. Fluid Dyn., Volume 3 (1972), pp. 211-224

[4] V. Travnikov; O. Crumeyrolle; I. Mutabazi Numerical investigation of the heat transfer in cylindrical annulus with a dielectric fluid under microgravity, Phys. Fluids, Volume 27 (2015)

[5] B. Futterer; C. Egbers; N. Dahley; S. Koch; L. Jehring First identification of sub- and supercritical convection patterns from ‘GeoFlow,’ the geophysical flow simulation experiment integrated in Fluid Science Laboratory, Acta Astronaut., Volume 66 (2010), p. 193

[6] B. Futterer; A. Krebs; A.C. Plesa; F. Zaussinger; R. Hollerbach; D. Breuer; C. Egbers Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity, J. Fluid Mech., Volume 735 (2013), p. 647

[7] B. Sitte; H.J. Rath Influence of the dielectrophoretic force on thermal convection, Exp. Fluids, Volume 34 (2003), p. 24

[8] N. Dahley; B. Futterer; C. Egbers; O. Crumeyrolle; I. Mutabazi J. Phys. Conf. Ser., 318 (2011)

[9] L.D. Landau; E.M. Lifshitz Electrodynamics of Continuous Media, Landau and Lifshitz Course of Theoretical Physics, vol. 8, Elsevier Butterworth–Heinemann, Burlington, MA, 1984

[10] A. Bahloul; I. Mutabazi; A. Ambari Codimension 2 points in the flow inside a cylindrical annulus with a radial temperature gradient, Eur. Phys. J. Appl. Phys., Volume 9 (2000), pp. 253-264

[11] G. de Vahl Davis; R.W. Thomas Natural convection between concentric vertical cylinders, Phys. Fluids, Volume 12 (1969) no. Suppl. II, pp. 198-207

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Thermoelectric convection in a planar capacitor: theoretical studies and experiments in parabolic flights

Elhadj B. Barry; Harunori N. Yoshikawa; Changwoo Kang; ...

C. R. Méca (2023)


Snowpack permittivity profile retrieval from tomographic SAR data

Badreddine Rekioua; Matthieu Davy; Laurent Ferro-Famil; ...

C. R. Phys (2017)


Combustion in microgravity: The French contribution

Roger Prud'homme; Guillaume Legros; José L. Torero

C. R. Méca (2017)