Comptes Rendus
Basic and applied researches in microgravity/Recherches fondamentales et appliquées en microgravité
Nucleate pool boiling in microgravity: Recent progress and future prospects
Comptes Rendus. Mécanique, Volume 345 (2017) no. 1, pp. 21-34.

Pool boiling on flat plates in microgravity has been studied for more than 50 years. The results of recent experiments performed in sounding rocket are presented and compared to previous results. At low heat flux, the vertical oscillatory motion of the primary bubble is responsible for the increase in the heat transfer coefficient in microgravity compared to ground experiments. The effect of a non-condensable gas on the stabilisation of the large primary bubble on the heater is pointed out. Experiments on isolated bubbles are also performed on ground and in parabolic flight. The effect of a shear flow on the bubble detachment is highlighted. A force balance model allows determining an expression of the capillary force and of the drag force acting on the bubble.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2016.10.004
Mots clés : Pool boiling, Bubble dynamics, Heat transfer, Microgravity
Catherine Colin 1 ; Olivier Kannengieser 1 ; Wladimir Bergez 1 ; Michel Lebon 1 ; Julien Sebilleau 1 ; Michaël Sagan 1 ; Sébastien Tanguy 1

1 Institut de mécanique des fluides de Toulouse, Université de Toulouse (INP–UPS–CNRS), 2, allée du Professeur-Camille-Soula, 31400 Toulouse, France
@article{CRMECA_2017__345_1_21_0,
     author = {Catherine Colin and Olivier Kannengieser and Wladimir Bergez and Michel Lebon and Julien Sebilleau and Micha\"el Sagan and S\'ebastien Tanguy},
     title = {Nucleate pool boiling in microgravity: {Recent} progress and future prospects},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {21--34},
     publisher = {Elsevier},
     volume = {345},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crme.2016.10.004},
     language = {en},
}
TY  - JOUR
AU  - Catherine Colin
AU  - Olivier Kannengieser
AU  - Wladimir Bergez
AU  - Michel Lebon
AU  - Julien Sebilleau
AU  - Michaël Sagan
AU  - Sébastien Tanguy
TI  - Nucleate pool boiling in microgravity: Recent progress and future prospects
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 21
EP  - 34
VL  - 345
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2016.10.004
LA  - en
ID  - CRMECA_2017__345_1_21_0
ER  - 
%0 Journal Article
%A Catherine Colin
%A Olivier Kannengieser
%A Wladimir Bergez
%A Michel Lebon
%A Julien Sebilleau
%A Michaël Sagan
%A Sébastien Tanguy
%T Nucleate pool boiling in microgravity: Recent progress and future prospects
%J Comptes Rendus. Mécanique
%D 2017
%P 21-34
%V 345
%N 1
%I Elsevier
%R 10.1016/j.crme.2016.10.004
%G en
%F CRMECA_2017__345_1_21_0
Catherine Colin; Olivier Kannengieser; Wladimir Bergez; Michel Lebon; Julien Sebilleau; Michaël Sagan; Sébastien Tanguy. Nucleate pool boiling in microgravity: Recent progress and future prospects. Comptes Rendus. Mécanique, Volume 345 (2017) no. 1, pp. 21-34. doi : 10.1016/j.crme.2016.10.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.10.004/

[1] J. Straub Boiling heat transfer and bubble dynamics in microgravity, Adv. Heat Transf., Volume 35 (2001), pp. 57-172

[2] H. Ohta Microgravity heat transfer in flow boiling, Adv. Heat Transf., Volume 37 (2003), pp. 1-76

[3] P. Di Marco Review of reduced gravity boiling heat transfer: European research, J. Jpn. Soc. Microgravity Appl., Volume 20 (2003) no. 4, pp. 252-263

[4] P. Di Marco Pool boiling in microgravity: old and recent results, Multiph. Sci. Technol., Volume 19 (2007) no. 2, pp. 141-165

[5] J. Kim Review of nucleate pool boiling bubble heat transfer mechanisms, Int. J. Multiph. Flow, Volume 35 (2009), pp. 1067-1076

[6] H. Merte; J. Clark Boiling heat transfer with cryogenic fluids at standard, fractional, and near-zero gravity, J. Heat Transf., Volume 86 (1964), pp. 351-359

[7] R. Siegel Effects of reduced gravity on heat transfer, Adv. Heat Transf., Volume 4 (1967), pp. 143-228

[8] M. Zell, J. Straub, A. Weinzierl, Nucleate pool boiling in subcooled liquid under microgravity. Results of texus experimental investigations, in: Proc. 5th European Symposium on Material Sciences under Microgravity, Schloss Elmau, Germany, 1984.

[9] H. Lee; J. Merte; H.F. Chiaramonte Pool boiling curve in microgravity, J. Thermophys. Heat Transf., Volume 11 (1997) no. 2, pp. 216-222

[10] H. Ohta Experiments on microgravity boiling heat transfer by using transparent heaters, Nucl. Eng. Des., Volume 175 (1997), pp. 167-180

[11] T. Oka; Y. Abe; Y.H. Mori; A. Nagashima Pool boiling heat transfer in microgravity (experiments with CFC-113 and water utilizing a drop shaft facility), JSME Int. J., Volume 39 (1996) no. 4, pp. 798-807

[12] O. Kannengieser; C. Colin; W. Bergez Influence of gravity on pool boiling on a flat plate: results of parabolic flights and ground experiments, Exp. Therm. Fluid Sci., Volume 35 (2011), pp. 788-796

[13] P. Di Marco; W. Grassi Effect of force fields on pool boiling flow patterns in normal and reduced gravity, Heat Mass Transf., Volume 45 (2009), pp. 959-966

[14] P. Di Marco; R. Raj; J. Kim Boiling in variable gravity under the action of an electric field: results of parabolic flight experiments, J. Phys. Conf. Ser., Volume 327 (2011)

[15] J. Kim; J. Benton; D. Wisniewski Pool boiling heat transfer on small heaters: effect of gravity and subcooling, Int. J. Heat Mass Transf., Volume 45 (2002), pp. 3919-3932

[16] D. Christopher; J. Kim A study of the effects of heater size, subcooling, and gravity level on pool boiling heat transfer, Int. J. Heat Fluid Flow, Volume 25 (2004), pp. 262-273

[17] R. Raj; J. Kim Heater size and gravity based pool boiling regime map: transition criteria between buoyancy and surface tension dominated boiling, J. Heat Transf., Volume 132 (2010) no. 9

[18] R. Raj; J. Kim; J. Mcquillen Subcooled pool boiling in variable gravity environments, J. Heat Transf., Volume 131 (2009) no. 9

[19] R. Raj; J. Kim; J. Mcquillen Gravity scaling parameter for pool boiling heat transfer, J. Heat Transf., Volume 132 (2010) no. 9

[20] R. Raj; J. Kim; J. Mcquillen On the scaling of pool boiling heat flux with gravity and heater size, J. Heat Transf., Volume 134 (2012)

[21] V.K. Dhir; G.R. Warrier; E. Aktinol; D. Chao; J. Eggers; W. Sheredy; W. Booth Nucleate pool boiling experiments (NPBX) on the international space station, Microgravity Sci. Technol., Volume 24 (2012) no. 5, pp. 307-325

[22] R. Raj; J. Kim; J. Mcquillen Pool boiling heat transfer on the international space station: experimental results and model verification, J. Heat Transf., Volume 134 (2012), p. 101504

[23] J.F. Zhao; J. Li; N. Yan; S.F. Wang Bubble behavior and heat transfer in quasi steady pool boiling in microgravity, Microgravity Sci. Technol., Volume 21 (2009), pp. 175-183

[24] G.R. Warrier; V.D. Dhir; D.F. Chao Nucleate Pool Boiling eXperiment (NPBX) in microgravity: international space station, Int. J. Heat Mass Transf., Volume 83 (2015), pp. 781-798

[25] O. Kannengieser; C. Colin; W. Bergez Pool boiling with non-condensable gas in microgravity: results of a sounding rocket experiment, Microgravity Sci. Technol., Volume 22 (2010), pp. 447-454

[26] M. Sagan Simulation numérique directe et étude expérimentale de l'ébullition nucléée en microgravité: application aux réservoirs des moteurs d'Ariane, University of Toulouse, France, 2013 http://ethesis.inp-toulouse.fr/archive/00002609/ (PhD thesis)

[27] J. Kim, R. Raj, Gravity and Heater Size Effects on Pool Boiling Heat Transfer, Report NASA/CR-2014-216672.

[28] P. Di Marco; W. Grassi Pool boiling in reduced gravity, Multiph. Sci. Technol., Volume 13 (2001) no. 3, pp. 179-206

[29] W.M. Rohsenow A method of correlating of heat transfer data for surface boiling of liquids, Trans. Am. Soc. Mech. Eng., Volume 84 (1952), pp. 969-975

[30] K. Stephan; M. Abdelsalam Heat-transfer correlation for natural convection boiling, Int. J. Heat Mass Transf., Volume 23 (1980), pp. 73-87

[31] M. Cooper Correlation for nucleate boiling – formulation using reduced pressure, Physicochem. Hydrodyn., Volume 3 (1982), pp. 89-111

[32] V.K. Dhir Nucleate boiling (S. Kandlikar; M. Shoji; V.K. Dhir, eds.), Handbook of Phase Change – Boiling and Condensation, vol. 4.4, Taylor and Francis, 1999, pp. 86-89

[33] O. Kannengieser Étude de l'ébullition sur plaque plane en microgravité, application aux réservoirs cryogéniques des fusées Ariane V, INP Toulouse, 2009 http://ethesis.inp-toulouse.fr/archive/00001058/ (PhD thesis)

[34] D. Qui; V. Dhir Single-bubble dynamics during pool boiling under low gravity conditions, J. Thermophys. Heat Transf., Volume 16 (2002) no. 3, pp. 336-345

[35] D.M. Qui; V.K. Dhir; D. Chao; M.M. Hasan; E. Neumann; G. Yee; A. Birchenough Single bubble dynamics during pool boiling under low gravity conditions, J. Thermophys. Heat Transf., Volume 16 (2002), pp. 336-345

[36] C. Sodtke; J. Kern; N. Schweizer; P. Stephan High-resolution measurements of wall temperature distribution underneath a single vapour bubble under microgravity conditions, Int. J. Heat Mass Transf., Volume 49 (2006), pp. 1100-1106

[37] N. Schweizer; P. Stephan Experimental study of bubble behavior and local heat flux in pool boiling under variable gravitational conditions, J. Multiph. Sci. Technol., Volume 21 (2009) no. 4, pp. 329-350

[38] E. Wagner; C. Sodtke; N. Schweizer; P. Stephan Experimental study of nucleate boiling heat transfer under low gravity conditions using TLCs for high resolution temperature measurements, J. Heat Mass Transf., Volume 42 (2006) no. 10, pp. 875-883

[39] E. Wagner; P. Stephan High resolution measurements at nucleate boiling of pure FC-84 and FC-3284 and it binary mixtures, J. Heat Transf., Volume 131 (2009) no. 12

[40] P.C. Stephan; C.A. Busse Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls, Int. J. Heat Mass Transf., Volume 35 (1992), pp. 383-391

[41] V. Nikolayev Dynamics of the triple contact line on a nonisothermal heater at partial wetting, Phys. Fluids, Volume 22 (2010)

[42] A. Rednikov; P. Colinet Evaporation-driven contact angles in a pure-vapor atmosphere: the effect of vapor pressure non-uniformity, Math. Model. Nat. Phenom., Volume 7 (2012) no. 4, pp. 53-63

[43] G. Son; V.K. Dhir; N. Ramanujapu Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface, J. Heat Transf., Volume 121 (1999), pp. 623-631

[44] T. Fuchs; J. Kern; P. Stephan A transient nucleate boiling model including microscale effects and wall heat transfer, J. Heat Transf., Volume 128 (2006) no. 12, pp. 1257-1265

[45] C. Kunkelmann; P. Stephan CFD simulation of boiling flows using the volume-of-fluid method within OpenFOAM, J. Numer. Heat Transf., Part A, Appl., Volume 56 (2009) no. 8, pp. 631-646

[46] C. Kunkelmann; P. Stephan Numerical simulation of the transient heat transfer during nucleate boiling of refrigerant HFE-7100, Int. J. Refrig., Volume 33 (2010), pp. 1221-1228

[47] P. Di Marco, Bubble growth and detachment: current status and future prospects, in: Proc. HEAT 2008, Fifth International Conference on Transport Phenomena in Multiphase Systems, Bialystok, Poland, 30 June–3 July 2008, pp. 67–82 (invited paper).

[48] A. Cattide; P. Di Marco; W. Grassi Evaluation of the electrical forces acting on a detaching bubble, Trieste, Italy (2007), pp. 315-320

[49] P. Di Marco; R. Kurimoto; G. Saccone; K. Hayashi; A. Tomiyama Bubble shape under the action of electric forces, Exp. Therm. Fluid Sci., Volume 49 (2013), pp. 160-168

[50] P. Di Marco Influence of force fields and flow patterns on boiling heat transfer performance, keynote lecture, IHTC14, Washington, DC, USA (2010) 18 pp. (CD-ROM)

[51] G.E. Thorncroft; J.F. Klausner; R. Mei Bubble forces and detachment models, Multiph. Sci. Technol., Volume 13 (2001), pp. 35-76

[52] C.W.M. Van Der Geld The dynamics of a boiling bubble before and after detachment, Heat Mass Transf., Volume 45 (2009), pp. 831-846

[53] G. Duhar; G. Riboux; C. Colin Vapour bubble growth and detachment at the wall of shear flow, Heat Mass Transf., Volume 45 (2009), pp. 847-855

[54] D. Legendre; C. Colin; T. Coquard Hydrodynamic of a hemispherical bubble sliding and growing on a wall in a viscous linear shear flow, Philos. Trans. R. Soc. A, Volume 366 (2008), pp. 2233-2248

[55] Y. Ma; J.N. Chung A study of bubble dynamics in reduced gravity forced-convection boiling, Int. J. Heat Mass Transf., Volume 44 (2001), pp. 399-415

[56] D. Serret; D. Brutin; O. Rahli Convective boiling between 2D plates: microgravity influence on bubble growth and detachment, Microgravity Sci. Technol., Volume 22 (2010) no. 3, pp. 377-384

[57] H. Yoshikawa, C. Colin, Single vapor bubble behavior in a shear flow in microgravity, in: 7th International Conference on Multiphase Flows, Tampa, FL, USA, June 2010.

[58] C.W.M. Van Der Geld; C. Colin; Q.I.E. Segers; Da Rosa V.H. Pereira; H.N. Yoshikawa Forces on a boiling bubble in a developing boundary layer, in microgravity with g-jitter and in terrestrial conditions, Phys. Fluids, Volume 24 (2012) | DOI

[59] M. Lebon, H. Yoshikawa, J. Sebilleau, C. Colin, Bubble formation in a quiescent liquid and in a shear flow, in: 9th International Conference on Boiling and Condensation Heat Transfer, Boulder, CO, USA, 26–30 April 2015.

[60] G. Duhar; C. Colin Dynamics of Bubble growth and detachment in a viscous shear flow, Phys. Fluids, Volume 18 (2006)

[61] J.F. Klausner; R. Mei; M.D. Bernhard; L.Z. Zeng Vapor bubble detachment in forced convection boiling, Int. J. Heat Mass Transf., Volume 36 (1993), pp. 651-662

[62] E.B. Dussan; R. Tao-Ping; Chow On the ability of drops or bubbles to stick to non-horizontal surfaces of solids, J. Fluid Mech., Volume 137 (1983), pp. 1-29

[63] D. Li; V.K. Dhir Numerical study of single bubble dynamics during flow boiling, J. Heat Transf., Volume 129 (2007), pp. 864-876

[64] N. Schweizer; M. Stelzer; O. Schoele-Schulz; G. Picker; H. Ranebo; J. Dettmann; O. Minster; B. Toth; J. Winter; L. Tadrist; P. Stephan; W. Grassi; P. Di Marco; C. Colin; G.P. Celata; J. Thome; O. Kabov RUBI—a reference multiscale boiling investigation for the fluid science laboratory http://adsabs.harvard.edu/abs/2010cosp...38.3565S (in: 38th COSPAR Scientific Assembly, Bremen, Germany, 18–15 July 2010, p. 18)

[65] B. Toth, et al. Future ESA experiments in heat and mass transfer research on-board the international space station, in: Proc. Seventh International Symposium on Two-Phase Systems for Ground and Space Applications, Beijing, China, 17–21 September 2012.

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Conception of a compact flow boiling loop for the International Space Station- First results in parabolic flights

Paul Chorin; Antoine Boned; Julien Sebilleau; ...

C. R. Méca (2023)


How does surface wettability influence nucleate boiling?

Hai Trieu Phan; Nadia Caney; Philippe Marty; ...

C. R. Méca (2009)


Cavitation in water: a review

Frédéric Caupin; Eric Herbert

C. R. Phys (2006)