Comptes Rendus
Basic and applied researches in microgravity/Recherches fondamentales et appliquées en microgravité
Aqueous foams and foam films stabilised by surfactants. Gravity-free studies
Comptes Rendus. Mécanique, Basic and applied researches in microgravity – A tribute to Bernard Zappoli’s contribution, Volume 345 (2017) no. 1, pp. 47-55.

There are still many open questions and problems in both fundamental research and practical applications of foams. Despite the fact that foams have been extensively studied, many aspects of foam physics and chemistry still remain unclear. Experiments on foams performed under microgravity allow studying wet foams, such as those obtained early during the foaming process. On Earth, wet foams evolve too quickly due to gravity drainage and only dry foams can be studied. This paper reviews the foam and foam film studies that we have performed in gravity-free conditions. It highlights the importance of surface rheology as well as of confinement effects in foams and foam films behaviour.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2016.10.009
Mots-clés : Microgravity, Aqeous foams, Foam films

Dominique Langevin 1

1 Laboratoire de physique des solides, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
@article{CRMECA_2017__345_1_47_0,
     author = {Dominique Langevin},
     title = {Aqueous foams and foam films stabilised by surfactants. {Gravity-free} studies},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {47--55},
     publisher = {Elsevier},
     volume = {345},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crme.2016.10.009},
     language = {en},
}
TY  - JOUR
AU  - Dominique Langevin
TI  - Aqueous foams and foam films stabilised by surfactants. Gravity-free studies
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 47
EP  - 55
VL  - 345
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2016.10.009
LA  - en
ID  - CRMECA_2017__345_1_47_0
ER  - 
%0 Journal Article
%A Dominique Langevin
%T Aqueous foams and foam films stabilised by surfactants. Gravity-free studies
%J Comptes Rendus. Mécanique
%D 2017
%P 47-55
%V 345
%N 1
%I Elsevier
%R 10.1016/j.crme.2016.10.009
%G en
%F CRMECA_2017__345_1_47_0
Dominique Langevin. Aqueous foams and foam films stabilised by surfactants. Gravity-free studies. Comptes Rendus. Mécanique, Basic and applied researches in microgravity – A tribute to Bernard Zappoli’s contribution, Volume 345 (2017) no. 1, pp. 47-55. doi : 10.1016/j.crme.2016.10.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.10.009/

[1] D. Weaire; S. Hutzler The Physics of Foams, Clarendon Press, 1999

[2] P. Stevenson Foam Engineering: Fundamentals and Applications, Wiley, 2012

[3] I. Cantat; S. Cohen-Addad; F. Elias; F. Graner; R. Hohler; O. Pitois; F. Rouyer; A. Saint-Jalmes Foams – Structure and Dynamics, Oxford University Press, 2013

[4] A.J. Liu; S.R. Nagel The jamming transition and the marginally jammed solid (J.S. Langer, ed.), Annu. Rev. Condens. Matter Phys., vol. 1, 2010, pp. 347-369

[5] A. Sheludko Thin liquid films, Adv. Colloid Interface Sci., Volume 1 (1967), pp. 391-464

[6] K.J. Mysels; M.N. Jones Direct measurement of the variation of double-layer repulsion with distance, Discuss. Faraday Soc., Volume 42 (1966), pp. 42-50

[7] D. Langevin; C. Marquez-Beltran; J. Delacotte Surface force measurements on freely suspended liquid films, Adv. Colloid Interface Sci., Volume 168 (2011), pp. 124-134

[8] D. Langevin Bubble coalescence in pure liquids and in surfactant solutions, Curr. Opin. Colloid Interface Sci., Volume 20 (2015), pp. 92-97

[9] A.A. Sonin; A. Bonfillon; D. Langevin Thinning of soap films – the role of surface viscoelasticity, J. Colloid Interface Sci., Volume 162 (1994), pp. 323-330

[10] D. Langevin Rheology of adsorbed surfactant monolayers at fluid surfaces (S.H. Davis; P. Moin, eds.), Annu. Rev. Fluid Mech., vol. 46, 2014, pp. 47-65

[11] P.A. Kralchevsky; A.D. Nikolov; D.T. Wasan; I.B. Ivanov Formation and expansion of dark spots in stratifying foam films, Langmuir, Volume 6 (1990), pp. 1180-1189

[12] A. Asnacios; A. Espert; A. Colin; D. Langevin Structural forces in thin films made from polyelectrolyte solutions, Phys. Rev. Lett., Volume 78 (1997), pp. 4974-4977

[13] P. Heinig; C.M. Beltran; D. Langevin Domain growth dynamics and local viscosity in stratifying foam films, Phys. Rev. E, Volume 73 (2006)

[14] J. Delacotte; E. Rio; F. Restagno; C. Uzum; R. von Klitzing; D. Langevin Viscosity of polyelectrolytes solutions in nanofilms, Langmuir, Volume 26 (2010), pp. 7819-7823

[15] L. Saulnier; F. Restagno; J. Delacotte; D. Langevin; E. Rio What is the mechanism of soap film entrainment?, Langmuir, Volume 27 (2011), pp. 13406-13409

[16] A. Maestro; W. Drenckhan; E. Rio; R. Hohler Liquid dispersions under gravity: volume fraction profile and osmotic pressure, Soft Matter, Volume 9 (2013), pp. 2531-2540

[17] M. Durand; G. Martinoty; D. Langevin Liquid flow through aqueous foams: from the plateau border-dominated regime to the node-dominated regime, Phys. Rev. E, Volume 60 (1999)

[18] A. Saint-Jalmes Physical chemistry in foam drainage and coarsening, Soft Matter, Volume 2 (2006), pp. 836-849

[19] S. Hutzler; D. Weaire; R. Crawford Convective instability in foam drainage, Europhys. Lett., Volume 41 (1998), pp. 461-465

[20] A. Saint-Jalmes; S. Marze; H. Ritacco; D. Langevin; S. Bail; J. Dubail; L. Guingot; G. Roux; P. Sung; L. Tosini Diffusive liquid propagation in porous and elastic materials: the case of foams under microgravity conditions, Phys. Rev. Lett., Volume 98 (2007)

[21] S.J. Cox; G. Verbist Liquid flow in foams under microgravity, Microgravity Sci. Technol., Volume 14 (2003), pp. 45-52

[22] A. Saint-Jalmes; D.J. Durian Vanishing elasticity for wet foams: equivalence with emulsions and role of polydispersity, J. Rheol., Volume 43 (1999), pp. 1411-1422

[23] R. Lespiat; S. Cohen-Addad; R. Hoehler Jamming and Flow of random-close-packed spherical bubbles: an analogy with granular materials, Phys. Rev. Lett., Volume 106 (2011)

[24] S. Marze; D. Langevin; A. Saint-Jalmesa Aqueous foam slip and shear regimes determined by rheometry and multiple light scattering, J. Rheol., Volume 52 (2008), pp. 1091-1111

[25] A. Saint-Jalmes; S.J. Cox; S. Marze; M. Safouane; D. Langevin; D. Weaire Experiments and simulations of liquid imbibition in aqueous foams under microgravity, Microgravity Sci. Technol., Volume 18 (2006), pp. 108-111

[26] D. Georgieva; A. Cagna; D. Langevin Link between surface elasticity and foam stability, Soft Matter, Volume 5 (2009), pp. 2063-2071

[27] V. Carrier; A. Colin Coalescence in draining foams, Langmuir, Volume 19 (2003), pp. 4535-4538

[28] A.L. Biance; A. Delbos; O. Pitois How topological rearrangements and liquid fraction control liquid foam stability, Phys. Rev. Lett., Volume 106 (2011)

[29] K. Khristov; D. Exerowa; G. Minkov Critical capillary pressure for destruction of single foam films and foam: effect of foam film size, Colloids Surf. A, Physicochem. Eng. Asp., Volume 210 (2002), pp. 159-166

[30] Z. Briceño-Ahumada; W. Drenckhan; D. Langevin Coalescence in draining foams made of very small bubbles, Phys. Rev. Lett., Volume 116 (2016)

[31] L. Saulnier; L. Champougny; G. Bastien; F. Restagno; D. Langevin; E. Rio A study of generation and rupture of soap films, Soft Matter, Volume 10 (2014), pp. 2899-2906

[32] S.T. Tobin; A.J. Meagher; B. Bulfin; M. Mobius; S. Hutzler A public study of the lifetime distribution of soap films, Amer. J. Phys., Volume 79 (2011), pp. 819-824

[33] N. Vandewalle; H. Caps; G. Delon; A. Saint-Jalmes; E. Rio; L. Saulnier; M. Adler; A.L. Biance; O. Pitois; S.C. Addad; R. Hohler; D. Weaire; S. Hutzler; D. Langevin Foam stability in microgravity (A. Meyer; I. Egry, eds.), International Symposium on Physical Sciences in Space, 2011

[34] H. Caps; N. Vandewalle; A. Saint-Jalmes; L. Saulnier; P. Yazhgur; E. Rio; A. Salonen; D. Langevin How foams unstable on Earth behave in microgravity?, Colloids Surf. A, Physicochem. Eng. Asp., Volume 457 (2014), pp. 392-396

[35] H. Caps; G. Delon; N. Vandewalle; R.M. Guillermic; O. Pitois; A.L. Biance; L. Saulnier; P. Yazhgur; E. Rio; A. Salonen; D. Langevin Does water foam exist in microgravity?, Europhys. News, Volume 45 (2014), pp. 22-25

[36] R. Tuinier; C.G.J. Bisperink; C. van den Berg; A. Prins Transient foaming behavior of aqueous alcohol solutions as related to their dilational surface properties, J. Colloid Interface Sci., Volume 179 (1996), pp. 327-334

[37] N.D. Denkov Mechanisms of foam destruction by oil-based antifoams, Langmuir, Volume 20 (2004), pp. 9463-9505

[38] P. Yazhgur; D. Langevin; H. Caps; V. Klein; E. Rio; A. Salonen How antifoams act: a microgravity study, npj Microgravity, Volume 1 (2015), p. 15004

[39] V. Bergeron; P. Cooper; C. Fischer; J. Giermanska-Kahn; D. Langevin; A. Pouchelon Polydimethylsiloxane (PDMS)-based antifoams, Colloids Surf. A, Physicochem. Eng. Asp., Volume 122 (1997), pp. 103-120

[40] P. Taylor Ostwald ripening in emulsions, Adv. Colloid Interface Sci., Volume 75 (1998), pp. 107-163

[41] J. Lambert; I. Cantat; R. Delannay; R. Mokso; P. Cloetens; J.A. Glazier; F. Graner Experimental growth law for bubbles in a moderately “Wet” 3D liquid foam, Phys. Rev. Lett., Volume 99 (2007)

[42] S. Hilgenfeldt; S.A. Koehler; H.A. Stone Dynamics of coarsening foams: accelerated and self-limiting drainage, Phys. Rev. Lett., Volume 86 (2001), p. 4704

[43] A. Cervantes Martinez; E. Rio; G. Delon; A. Saint-Jalmes; D. Langevin; B.P. Binks On the origin of the remarkable stability of aqueous foams stabilised by nanoparticles: link with microscopic surface properties, Soft Matter, Volume 4 (2008), pp. 1531-1535

[44] Z. Briceño-Ahumada; D. Langevin On the influence of surfactant on the coarsening of aqueous foams, Adv. Colloid Interface Sci. (2016) (in press) | DOI

[45] N. Isert; G. Maret; C.M. Aegerter Coarsening dynamics of three-dimensional levitated foams: from wet to dry, Eur. Phys. J. E, Volume 36 (2013), p. 116

[46] M. Le Merrer; S. Cohen-Addad; R. Hoehler Duration of bubble rearrangements in a coarsening foam probed by time-resolved diffusing-wave spectroscopy: impact of interfacial rigidity, Phys. Rev. E, Volume 88 (2013)

  • Mateusz Sochacki; Piotr Michorczyk; Otmar Vogt Foam Fractionation as an Efficient Method for the Separation and Recovery of Surfactants and Surface-Inactive Agents: State of the Art, ACS Omega, Volume 10 (2025) no. 1, p. 55 | DOI:10.1021/acsomega.4c08413
  • Lina Zhao; Qin Zhang A significant review of froth stability in mineral flotation, Chemical Engineering Science, Volume 302 (2025), p. 120738 | DOI:10.1016/j.ces.2024.120738
  • Nikoo Moradpour; Reza Azadi; Peichun Amy Tsai CO2 foam structure and displacement dynamics in a Hele–Shaw cell, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 705 (2025), p. 135533 | DOI:10.1016/j.colsurfa.2024.135533
  • Pouria Amani; Ali Salehi; Jinjie Wang; Mahshid Firouzi Enhancing CO2 foam stability with hexane vapours: Mitigating coarsening and drainage rates, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 707 (2025), p. 135867 | DOI:10.1016/j.colsurfa.2024.135867
  • Tia Lohtander; Tetyana Koso; Ngoc Huynh; Tuomo Hjelt; Marie Gestranius; Alistair W. T. King; Monika Österberg; Suvi Arola Bioactive Fiber Foam Films from Cellulose and Willow Bark Extract with Improved Water Tolerance, ACS Omega (2024) | DOI:10.1021/acsomega.3c08906
  • Ahmed Gowida; Salaheldin Elkatatny; Ahmed Farid Ibrahim Impact of Eco-Friendly Drilling Additives on Foaming Properties for Sustainable Underbalanced Foam Drilling Applications, ACS Omega, Volume 9 (2024) no. 6, p. 6719 | DOI:10.1021/acsomega.3c07882
  • Shubham Raj; K. Ramamurthy Classification of surfactants and admixtures for producing stable aqueous foam, Advances in Colloid and Interface Science, Volume 331 (2024), p. 103234 | DOI:10.1016/j.cis.2024.103234
  • Nikoo Fahemi; Shayan Angizi; Amir Hatamie Integration of Ultrathin Bubble Walls and Electrochemistry: Innovation in Microsensing for Forensic Nitrite Detection and Microscale Metallic Film Deposition, Analytical Chemistry (2024) | DOI:10.1021/acs.analchem.3c04488
  • Jie Hu; Xiaobing Xu; Meng Meng; Wenjie Xu Experimental comparison of foam flow and gas flow in municipal solid waste, Canadian Geotechnical Journal (2024) | DOI:10.1139/cgj-2023-0620
  • Ahmed G. Mehairi; Rahil Khoshnazar; Maen M. Husein Stability of CO2/N2 foam generated in CaCO3 nanoparticle/CTAB aqueous dispersion, Chemical Engineering Science, Volume 286 (2024), p. 119643 | DOI:10.1016/j.ces.2023.119643
  • Muhammad Rizwanur Rahman; Li Shen; James P. Ewen; David M. Heyes; Daniele Dini; Edward R. Smith Life and death of a thin liquid film, Communications Physics, Volume 7 (2024) no. 1 | DOI:10.1038/s42005-024-01745-z
  • Xiangfang Hu; Zong Meng An overview of edible foams in food and modern cuisine: Destabilization and stabilization mechanisms and applications, Comprehensive Reviews in Food Science and Food Safety, Volume 23 (2024) no. 1 | DOI:10.1111/1541-4337.13284
  • Hernán A. Ritacco Foam-assisted oil recovery: A physics-based perspective, Current Opinion in Colloid Interface Science, Volume 72 (2024), p. 101809 | DOI:10.1016/j.cocis.2024.101809
  • Nikoo Moradpour; Junyi Yang; Peichun Amy Tsai Liquid foam: Fundamentals, rheology, and applications of foam displacement in porous structures, Current Opinion in Colloid Interface Science, Volume 74 (2024), p. 101845 | DOI:10.1016/j.cocis.2024.101845
  • Xiaoliang Ji; Wenxuan Zhong; Kangqi Liu; Yichen Jiang; Hongyue Chen; Wei Zhao; Duyang Zang Extraordinary stability of surfactant‐free bubbles suspended in ultrasound, Droplet, Volume 3 (2024) no. 2 | DOI:10.1002/dro2.119
  • Ali Ahmadi; Abbas Khaksar Manshad; Majid Akbari; Jagar A. Ali; Pshtiwan T. Jaf; Ahmed Fattah Abdulrahman Nano-stabilized foam for enhanced oil recovery using green nanocomposites and anionic surfactants: An experimental study, Energy, Volume 290 (2024), p. 130201 | DOI:10.1016/j.energy.2023.130201
  • Pragya Malik; Durgesh Nandini; Bijay P. Tripathi Firefighting aqueous film forming foam composition, properties and toxicity: a review, Environmental Chemistry Letters, Volume 22 (2024) no. 4, p. 2013 | DOI:10.1007/s10311-024-01739-x
  • Ioannis Papagiannis; Mauro S. Innocente; Joshua D. Davies; Joshua L. Ryan; Evangelos I. Gkanas Investigating the impact of iron oxide nanoparticles on the stability of class A foam for wildfire suppression, Fire Safety Journal, Volume 150 (2024), p. 104282 | DOI:10.1016/j.firesaf.2024.104282
  • Radhouan Belgacem El Zrelli; Sébastien Fabre; Sylvie Castet; Michel Grégoire; Oussema Fersi; Claudie Josse; Anne-Marie Cousin; Pierre Courjault-Radé Unveiling the organic nature of phosphogypsum foam: Insights into formation dynamics, pollution load, and contribution to marine pollution in the Southern Mediterranean Sea, Journal of Hazardous Materials, Volume 480 (2024), p. 135732 | DOI:10.1016/j.jhazmat.2024.135732
  • Yan Liu; Fangzhi Duan; Yongfeng Zhu; Xicun Wang; Li Zong; Aiqin Wang Porous superabsorbent composites prepared from aqueous foam template and application evaluation, Soft Matter, Volume 20 (2024) no. 7, p. 1438 | DOI:10.1039/d3sm01455j
  • Chinmay Katke; Esteban Pedrueza-Villalmanzo; Karolina Spustova; Ruslan Ryskulov; C. Nadir Kaplan; Irep Gözen Colony-like Protocell Superstructures, ACS Nano, Volume 17 (2023) no. 4, p. 3368 | DOI:10.1021/acsnano.2c08093
  • Fangzhi Duan; Yongfeng Zhu; Bin Mu; Aiqin Wang Recent progress and future prospects on aqueous foams stabilized based on clay minerals, Applied Clay Science, Volume 236 (2023), p. 106885 | DOI:10.1016/j.clay.2023.106885
  • Nanyan Hu; Yujie Liu; Lihua Ke; Yicheng Ye; Jinpeng Jia; Zhenhao Sun; Dunxi Chen Preparation and frothing mechanism of froth concrete based on solid waste: A review, Construction and Building Materials, Volume 401 (2023), p. 132831 | DOI:10.1016/j.conbuildmat.2023.132831
  • Masaya Endo; Marie Tani; Rei Kurita Scraping of foam on a substrate, Journal of Colloid and Interface Science, Volume 650 (2023), p. 1612 | DOI:10.1016/j.jcis.2023.07.023
  • Weifeng Zhang; Liuhao Chen; Jiahe Chen; Long Jiang; Wen-Hao Su; Kai Yu; Huagui Zhang Synergy between hydrophilic silica nanoparticles and poly(vinylpyrrolidone) for long-term foam stabilization with little energy input, Journal of Molecular Liquids, Volume 383 (2023), p. 122049 | DOI:10.1016/j.molliq.2023.122049
  • Meiqing Liang; Xuezhi Zhao; Ji Wang; Yujun Feng A Comparative Study on CO2-Switchable Foams Stabilized by C22- or C18-Tailed Tertiary Amines, Molecules, Volume 28 (2023) no. 6, p. 2567 | DOI:10.3390/molecules28062567
  • Fabiana O. Kotwiski; Elaine C. de M. C. Albuquerque; Angélica M. Lucchese Topical foam as a promising carrier system for active pharmaceutical ingredients: review of clinical studies, Pharmaceutical Development and Technology, Volume 28 (2023) no. 8, p. 768 | DOI:10.1080/10837450.2023.2251556
  • Badri Vishal Foaming and rheological properties of aqueous solutions: an interfacial study, Reviews in Chemical Engineering, Volume 39 (2023) no. 2, p. 271 | DOI:10.1515/revce-2020-0060
  • Hernán A. Ritacco Polyelectrolyte/Surfactant Mixtures: A Pathway to Smart Foams, ACS Omega, Volume 7 (2022) no. 41, p. 36117 | DOI:10.1021/acsomega.2c05739
  • Tia Lohtander; Reima Herrala; Päivi Laaksonen; Sami Franssila; Monika Österberg Lightweight lignocellulosic foams for thermal insulation, Cellulose, Volume 29 (2022) no. 3, p. 1855 | DOI:10.1007/s10570-021-04385-6
  • Tahereh Shojaeimehr; Michael Schwarze; Michelle Tupinamba Lima; Reinhard Schomäcker Correlation of performance data of silica particle flotations and foaming properties of cationic and nonionic surfactants for the development of selection criteria for flotation auxiliaries, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 649 (2022), p. 129159 | DOI:10.1016/j.colsurfa.2022.129159
  • Fanni Falusi; Mária Budai-Szűcs; Erzsébet Csányi; Szilvia Berkó; Tamás Spaits; Ildikó Csóka; Anita Kovács Investigation of the effect of polymers on dermal foam properties using the QbD approach, European Journal of Pharmaceutical Sciences, Volume 173 (2022), p. 106160 | DOI:10.1016/j.ejps.2022.106160
  • Heni Dallagi; Fethi Aloui; Laurent Bouvier; Laurent Wauquier; Thierry Benezech Numerical and experimental investigations into the rheological behaviour of wet foam flowing under a fence, Food and Bioproducts Processing, Volume 132 (2022), p. 211 | DOI:10.1016/j.fbp.2021.12.009
  • Fanni Falusi; Szilvia Berkó; Anita Kovács; Mária Budai-Szűcs Application of Xanthan Gum and Hyaluronic Acid as Dermal Foam Stabilizers, Gels, Volume 8 (2022) no. 7, p. 413 | DOI:10.3390/gels8070413
  • Han Ke; Jie Hu; Yun Min Chen; Ji Wu Lan; Liang Tong Zhan; Meng Meng; Yi Qing Yang; Yu Chao Li Foam-induced high gas pressures in wet municipal solid waste landfills, Géotechnique, Volume 72 (2022) no. 10, p. 860 | DOI:10.1680/jgeot.19.p.219
  • Aman Agarwal; Y. A. Liu; Luke Dooley; Christopher McDowell; Mads Thaysen Large-Scale Industrial Fermenter Foaming Control: Automated Machine Learning for Antifoam Prediction and Defoaming Process Implementation, Industrial Engineering Chemistry Research, Volume 61 (2022) no. 15, p. 5227 | DOI:10.1021/acs.iecr.1c05006
  • Nanik Purwanti; Sean A. Hogan; Valentyn A. Maidannyk; Shane Mulcahy; Eoin G. Murphy Effect of pasteurisation and foaming temperature on the physicochemical and foaming properties of nano-filtered mineral acid whey, International Dairy Journal, Volume 133 (2022), p. 105419 | DOI:10.1016/j.idairyj.2022.105419
  • Nghia P. Tran; Tuan N. Nguyen; Tuan D. Ngo; Phung K. Le; Tuan A. Le Strategic progress in foam stabilisation towards high-performance foam concrete for building sustainability: A state-of-the-art review, Journal of Cleaner Production, Volume 375 (2022), p. 133939 | DOI:10.1016/j.jclepro.2022.133939
  • Marziyeh Hajiaghaei; Akram Sharifi; Rita Celano Physicochemical Properties of Red Beetroot and Quince Fruit Extracts Instant Beverage Powder: Effect of Drying Method and Maltodextrin Concentration, Journal of Food Quality, Volume 2022 (2022), p. 1 | DOI:10.1155/2022/7499994
  • Sagyn Omirbekov; Hossein Davarzani; Bexultan Sabyrbay; Stéfan Colombano; Azita Ahmadi-Senichault Experimental study of rheological behavior of foam flow in capillary tubes, Journal of Non-Newtonian Fluid Mechanics, Volume 302 (2022), p. 104774 | DOI:10.1016/j.jnnfm.2022.104774
  • Sriteja Mantha; Huikuan Chao; Andrew S. Ylitalo; Thomas C. Fitzgibbons; Weijun Zhou; Valeriy V. Ginzburg; Zhen-Gang Wang Surfactant in a Polyol–CO2 Mixture: Insights from a Classical Density Functional Theory Study, Langmuir, Volume 38 (2022) no. 51, p. 16172 | DOI:10.1021/acs.langmuir.2c02913
  • Oksana Stennikova; Natalia Shmakova; Jean-Bastien Carrat; Evgeny Ermanyuk Liquid Fraction Effect on Foam Flow through a Local Obstacle, Polymers, Volume 14 (2022) no. 23, p. 5307 | DOI:10.3390/polym14235307
  • H.K. Schofield; D.P. Megson; J. Da Costa; L.A. Richardson; K. Shelbourne; J. Payne Fluorosurfactant retention in the foam blanket during gravitational drainage of an aqueous film-forming foam, Colloid and Interface Science Communications, Volume 42 (2021), p. 100404 | DOI:10.1016/j.colcom.2021.100404
  • Olivier Tramis; Akiho Fujioka; Hiroyuki Imanaka; Naoyuki Ishida; Koreyoshi Imamura Foaming characteristics of sugar- and polyvinylpyrrolidone-alcohol solutions during vacuum foam drying: A rheological approach, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 627 (2021), p. 127174 | DOI:10.1016/j.colsurfa.2021.127174
  • Pradnya Palekar-Shanbhag; Ujala Mishra; Madhura Patil; Anusha Kamath; Riddhi Kini Use of Medicated Foams for Skin Diseases, Current Drug Therapy, Volume 16 (2021) no. 2, p. 133 | DOI:10.2174/1574885515666210106115717
  • R. Preethi; D. Shweta; J. A. Moses; C. Anandharamakrishnan Conductive hydro drying as an alternative method for egg white powder production, Drying Technology, Volume 39 (2021) no. 3, p. 324 | DOI:10.1080/07373937.2020.1788073
  • Labiba El-Khordagui; Sara E. Badawey; Lamia A. Heikal Application of biosurfactants in the production of personal care products, and household detergents and industrial and institutional cleaners, Green Sustainable Process for Chemical and Environmental Engineering and Science (2021), p. 49 | DOI:10.1016/b978-0-12-823380-1.00005-8
  • Dhefaf Raisan Faisal; John Aunna; Abd Alhamid Sarhan; Jamal Naser Numerical Modeling of Flow through Foam Nodes within the Dry and Wet Limits, Langmuir, Volume 37 (2021) no. 30, p. 8929 | DOI:10.1021/acs.langmuir.1c00362
  • Thridsawan Prasopdee; Darshil U. Shah; Wirasak Smitthipong Approaches toward High Resilience Rubber Foams: Morphology–Mechanics–Thermodynamics Relationships, Macromolecular Materials and Engineering, Volume 306 (2021) no. 10 | DOI:10.1002/mame.202100337
  • Priyanka Dhar; Maria Thornhill; Sophie Roelants; Wim Soetaert; Irina V. Chernyshova; Hanumantha Rao Kota Linking molecular structures of yeast-derived biosurfactants with their foaming, interfacial, and flotation properties, Minerals Engineering, Volume 174 (2021), p. 107270 | DOI:10.1016/j.mineng.2021.107270
  • Thales Carl Lavoratti; Sascha Heitkam; Uwe Hampel; Gregory Lecrivain A computational method to simulate mono- and poly-disperse two-dimensional foams flowing in obstructed channel, Rheologica Acta, Volume 60 (2021) no. 10, p. 587 | DOI:10.1007/s00397-021-01288-y
  • Abhishek Govindu; Ramadan Ahmed; Subhash Shah; Mahmood Amani The Effect of Inclination on the Stability of Foam Systems in Drilling and Well Operations, SPE Drilling Completion, Volume 36 (2021) no. 02, p. 263 | DOI:10.2118/199821-pa
  • Jan Zawala; Kazimierz Malysa; Przemyslaw B. Kowalczuk On importance of external conditions and properties of the interacting phases in formation and stability of symmetrical and unsymmetrical liquid films, Advances in Colloid and Interface Science, Volume 276 (2020), p. 102085 | DOI:10.1016/j.cis.2019.102085
  • Sagyn Omirbekov; Hossein Davarzani; Stéfan Colombano; Azita Ahmadi-Senichault Experimental and numerical upscaling of foam flow in highly permeable porous media, Advances in Water Resources, Volume 146 (2020), p. 103761 | DOI:10.1016/j.advwatres.2020.103761
  • Maria Russo; Zacharias Amara; Johan Fenneteau; Pauline Chaumont-Olive; Ilham Maimouni; Patrick Tabeling; Janine Cossy Stable liquid foams from a new polyfluorinated surfactant, Chemical Communications, Volume 56 (2020) no. 43, p. 5807 | DOI:10.1039/d0cc02182b
  • M. Borkowski; D. Kosior; J. Zawala Effect of initial adsorption coverage and dynamic adsorption layer formation at bubble surface in stability of single foam films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 589 (2020), p. 124446 | DOI:10.1016/j.colsurfa.2020.124446
  • Nikolai Denkov; Slavka Tcholakova; Nadya Politova-Brinkova Physicochemical control of foam properties, Current Opinion in Colloid Interface Science, Volume 50 (2020), p. 101376 | DOI:10.1016/j.cocis.2020.08.001
  • Sagyn Omirbekov; Hossein Davarzani; Azita Ahmadi-Senichault Experimental Study of Non-Newtonian Behavior of Foam Flow in Highly Permeable Porous Media, Industrial Engineering Chemistry Research, Volume 59 (2020) no. 27, p. 12568 | DOI:10.1021/acs.iecr.0c00879
  • Jan Zawala; Agata Wiertel-Pochopien; Erik Larsen; Przemyslaw B. Kowalczuk Synergism between Cationic Alkyltrimethylammonium Bromides (CnTAB) and Nonionic n-Octanol in the Foamability of Their Mixed Solutions, Industrial Engineering Chemistry Research, Volume 59 (2020) no. 3, p. 1159 | DOI:10.1021/acs.iecr.9b05897
  • Jaakko Asikainen; Erkki Saharinen; Antti Koponen Dispersion of 24-mm staple fibers with foam, Journal of Engineered Fibers and Fabrics, Volume 15 (2020) | DOI:10.1177/1558925020946441
  • Talha Majeed; Theis I. Sølling; Muhammad Shahzad Kamal Foamstability: The interplay between salt-, surfactant- and critical micelle concentration, Journal of Petroleum Science and Engineering, Volume 187 (2020), p. 106871 | DOI:10.1016/j.petrol.2019.106871
  • Antonio G. Checa; Fátima Linares; Julia Maldonado-Valderrama; Elizabeth M. Harper Foamy oysters: vesicular microstructure production in the Gryphaeidae via emulsification, Journal of The Royal Society Interface, Volume 17 (2020) no. 170, p. 20200505 | DOI:10.1098/rsif.2020.0505
  • Oladayo Ogunyinka; Alexander Wright; Guido Bolognesi; Felipe Iza; Himiyage Chaminda Hemaka Bandulasena An integrated microfluidic chip for generation and transfer of reactive species using gas plasma, Microfluidics and Nanofluidics, Volume 24 (2020) no. 2 | DOI:10.1007/s10404-019-2316-9
  • Ilham Maimouni; Cesare M. Cejas; Janine Cossy; Patrick Tabeling; Maria Russo Microfluidics Mediated Production of Foams for Biomedical Applications, Micromachines, Volume 11 (2020) no. 1, p. 83 | DOI:10.3390/mi11010083
  • Jan Zawala; Agata Wiertel-Pochopien; Przemyslaw B. Kowalczuk Critical Synergistic Concentration of Binary Surfactant Mixtures, Minerals, Volume 10 (2020) no. 2, p. 192 | DOI:10.3390/min10020192
  • J.L. Sutherland; J.E. Dickinson; K.P. Galvin Flotation of coarse coal particles in the Reflux™ Flotation Cell, Minerals Engineering, Volume 149 (2020), p. 106224 | DOI:10.1016/j.mineng.2020.106224
  • Xiaoliang Ji; Xiaolu Wang; Yongjian Zhang; Duyang Zang Interfacial viscoelasticity and jamming of colloidal particles at fluid–fluid interfaces: a review, Reports on Progress in Physics, Volume 83 (2020) no. 12, p. 126601 | DOI:10.1088/1361-6633/abbcd8
  • Jimin Zhou; Mayank Srivastava; Ruth Hahn; Art Inouye; Varadarajan Dwarakanath, SPE Improved Oil Recovery Conference (2020) | DOI:10.2118/200315-ms
  • Patricia Vega-Martínez; Javier Rodríguez-Rodríguez; Devaraj van der Meer Growth of a bubble cloud in CO2-saturated water under microgravity, Soft Matter, Volume 16 (2020) no. 20, p. 4728 | DOI:10.1039/d0sm00015a
  • Wenchao Xiang; Natalie Preisig; Annika Ketola; Blaise L. Tardy; Long Bai; Jukka A. Ketoja; Cosima Stubenrauch; Orlando J. Rojas How Cellulose Nanofibrils Affect Bulk, Surface, and Foam Properties of Anionic Surfactant Solutions, Biomacromolecules, Volume 20 (2019) no. 12, p. 4361 | DOI:10.1021/acs.biomac.9b01037
  • Hussam Alghamdi; Narayanan Neithalath Synthesis and characterization of 3D-printable geopolymeric foams for thermally efficient building envelope materials, Cement and Concrete Composites, Volume 104 (2019), p. 103377 | DOI:10.1016/j.cemconcomp.2019.103377
  • Soumya Devavarapu; Paritosh Chaudhuri; Aroh Shrivastava; Santanu Bhattacharyya Processing of porous alumina by foaming method-effect of foaming agent, solid loading and binder, Ceramics International, Volume 45 (2019) no. 9, p. 12264 | DOI:10.1016/j.ceramint.2019.03.139
  • Pinlu Cao; Zhuo Chen; Miaomiao Liu; Hongyu Cao; Baoyi Chen Numerical and experimental study of a novel aerodynamic foam breaker for foam drilling fluid, Energy Science Engineering, Volume 7 (2019) no. 6, p. 2410 | DOI:10.1002/ese3.428
  • Nilanjan Pal; Narendra Kumar; Amit Verma; Keka Ojha; Ajay Mandal Performance Evaluation of Novel Sunflower Oil-Based Gemini Surfactant(s) with Different Spacer Lengths: Application in Enhanced Oil Recovery, Energy Fuels, Volume 32 (2018) no. 11, p. 11344 | DOI:10.1021/acs.energyfuels.8b02744
  • Arno G.B. Wouters; Ine Rombouts; Ellen Fierens; Kristof Brijs; Jan A. Delcour Enzymatically Hydrolyzed Wheat Gluten as a Foaming Agent in Food: Incorporation in a Meringue Recipe as a Proof‐of‐Concept, Journal of Food Science, Volume 83 (2018) no. 8, p. 2119 | DOI:10.1111/1750-3841.14283
  • Nurudeen Yekeen; Muhammad A. Manan; Ahmad Kamal Idris; Eswaran Padmanabhan; Radzuan Junin; Ali Mohamed Samin; Afeez O. Gbadamosi; Ifeanyi Oguamah A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery, Journal of Petroleum Science and Engineering, Volume 164 (2018), p. 43 | DOI:10.1016/j.petrol.2018.01.035
  • Christopher Hill; Julian Eastoe Foams: From nature to industry, Advances in Colloid and Interface Science, Volume 247 (2017), p. 496 | DOI:10.1016/j.cis.2017.05.013

Cité par 77 documents. Sources : Crossref

Commentaires - Politique