Comptes Rendus
Basic and applied researches in microgravity/Recherches fondamentales et appliquées en microgravité
Aqueous foams and foam films stabilised by surfactants. Gravity-free studies
Comptes Rendus. Mécanique, Volume 345 (2017) no. 1, pp. 47-55.

There are still many open questions and problems in both fundamental research and practical applications of foams. Despite the fact that foams have been extensively studied, many aspects of foam physics and chemistry still remain unclear. Experiments on foams performed under microgravity allow studying wet foams, such as those obtained early during the foaming process. On Earth, wet foams evolve too quickly due to gravity drainage and only dry foams can be studied. This paper reviews the foam and foam film studies that we have performed in gravity-free conditions. It highlights the importance of surface rheology as well as of confinement effects in foams and foam films behaviour.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2016.10.009
Mots clés : Microgravity, Aqeous foams, Foam films

Dominique Langevin 1

1 Laboratoire de physique des solides, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
@article{CRMECA_2017__345_1_47_0,
     author = {Dominique Langevin},
     title = {Aqueous foams and foam films stabilised by surfactants. {Gravity-free} studies},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {47--55},
     publisher = {Elsevier},
     volume = {345},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crme.2016.10.009},
     language = {en},
}
TY  - JOUR
AU  - Dominique Langevin
TI  - Aqueous foams and foam films stabilised by surfactants. Gravity-free studies
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 47
EP  - 55
VL  - 345
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2016.10.009
LA  - en
ID  - CRMECA_2017__345_1_47_0
ER  - 
%0 Journal Article
%A Dominique Langevin
%T Aqueous foams and foam films stabilised by surfactants. Gravity-free studies
%J Comptes Rendus. Mécanique
%D 2017
%P 47-55
%V 345
%N 1
%I Elsevier
%R 10.1016/j.crme.2016.10.009
%G en
%F CRMECA_2017__345_1_47_0
Dominique Langevin. Aqueous foams and foam films stabilised by surfactants. Gravity-free studies. Comptes Rendus. Mécanique, Volume 345 (2017) no. 1, pp. 47-55. doi : 10.1016/j.crme.2016.10.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.10.009/

[1] D. Weaire; S. Hutzler The Physics of Foams, Clarendon Press, 1999

[2] P. Stevenson Foam Engineering: Fundamentals and Applications, Wiley, 2012

[3] I. Cantat; S. Cohen-Addad; F. Elias; F. Graner; R. Hohler; O. Pitois; F. Rouyer; A. Saint-Jalmes Foams – Structure and Dynamics, Oxford University Press, 2013

[4] A.J. Liu; S.R. Nagel The jamming transition and the marginally jammed solid (J.S. Langer, ed.), Annu. Rev. Condens. Matter Phys., vol. 1, 2010, pp. 347-369

[5] A. Sheludko Thin liquid films, Adv. Colloid Interface Sci., Volume 1 (1967), pp. 391-464

[6] K.J. Mysels; M.N. Jones Direct measurement of the variation of double-layer repulsion with distance, Discuss. Faraday Soc., Volume 42 (1966), pp. 42-50

[7] D. Langevin; C. Marquez-Beltran; J. Delacotte Surface force measurements on freely suspended liquid films, Adv. Colloid Interface Sci., Volume 168 (2011), pp. 124-134

[8] D. Langevin Bubble coalescence in pure liquids and in surfactant solutions, Curr. Opin. Colloid Interface Sci., Volume 20 (2015), pp. 92-97

[9] A.A. Sonin; A. Bonfillon; D. Langevin Thinning of soap films – the role of surface viscoelasticity, J. Colloid Interface Sci., Volume 162 (1994), pp. 323-330

[10] D. Langevin Rheology of adsorbed surfactant monolayers at fluid surfaces (S.H. Davis; P. Moin, eds.), Annu. Rev. Fluid Mech., vol. 46, 2014, pp. 47-65

[11] P.A. Kralchevsky; A.D. Nikolov; D.T. Wasan; I.B. Ivanov Formation and expansion of dark spots in stratifying foam films, Langmuir, Volume 6 (1990), pp. 1180-1189

[12] A. Asnacios; A. Espert; A. Colin; D. Langevin Structural forces in thin films made from polyelectrolyte solutions, Phys. Rev. Lett., Volume 78 (1997), pp. 4974-4977

[13] P. Heinig; C.M. Beltran; D. Langevin Domain growth dynamics and local viscosity in stratifying foam films, Phys. Rev. E, Volume 73 (2006)

[14] J. Delacotte; E. Rio; F. Restagno; C. Uzum; R. von Klitzing; D. Langevin Viscosity of polyelectrolytes solutions in nanofilms, Langmuir, Volume 26 (2010), pp. 7819-7823

[15] L. Saulnier; F. Restagno; J. Delacotte; D. Langevin; E. Rio What is the mechanism of soap film entrainment?, Langmuir, Volume 27 (2011), pp. 13406-13409

[16] A. Maestro; W. Drenckhan; E. Rio; R. Hohler Liquid dispersions under gravity: volume fraction profile and osmotic pressure, Soft Matter, Volume 9 (2013), pp. 2531-2540

[17] M. Durand; G. Martinoty; D. Langevin Liquid flow through aqueous foams: from the plateau border-dominated regime to the node-dominated regime, Phys. Rev. E, Volume 60 (1999)

[18] A. Saint-Jalmes Physical chemistry in foam drainage and coarsening, Soft Matter, Volume 2 (2006), pp. 836-849

[19] S. Hutzler; D. Weaire; R. Crawford Convective instability in foam drainage, Europhys. Lett., Volume 41 (1998), pp. 461-465

[20] A. Saint-Jalmes; S. Marze; H. Ritacco; D. Langevin; S. Bail; J. Dubail; L. Guingot; G. Roux; P. Sung; L. Tosini Diffusive liquid propagation in porous and elastic materials: the case of foams under microgravity conditions, Phys. Rev. Lett., Volume 98 (2007)

[21] S.J. Cox; G. Verbist Liquid flow in foams under microgravity, Microgravity Sci. Technol., Volume 14 (2003), pp. 45-52

[22] A. Saint-Jalmes; D.J. Durian Vanishing elasticity for wet foams: equivalence with emulsions and role of polydispersity, J. Rheol., Volume 43 (1999), pp. 1411-1422

[23] R. Lespiat; S. Cohen-Addad; R. Hoehler Jamming and Flow of random-close-packed spherical bubbles: an analogy with granular materials, Phys. Rev. Lett., Volume 106 (2011)

[24] S. Marze; D. Langevin; A. Saint-Jalmesa Aqueous foam slip and shear regimes determined by rheometry and multiple light scattering, J. Rheol., Volume 52 (2008), pp. 1091-1111

[25] A. Saint-Jalmes; S.J. Cox; S. Marze; M. Safouane; D. Langevin; D. Weaire Experiments and simulations of liquid imbibition in aqueous foams under microgravity, Microgravity Sci. Technol., Volume 18 (2006), pp. 108-111

[26] D. Georgieva; A. Cagna; D. Langevin Link between surface elasticity and foam stability, Soft Matter, Volume 5 (2009), pp. 2063-2071

[27] V. Carrier; A. Colin Coalescence in draining foams, Langmuir, Volume 19 (2003), pp. 4535-4538

[28] A.L. Biance; A. Delbos; O. Pitois How topological rearrangements and liquid fraction control liquid foam stability, Phys. Rev. Lett., Volume 106 (2011)

[29] K. Khristov; D. Exerowa; G. Minkov Critical capillary pressure for destruction of single foam films and foam: effect of foam film size, Colloids Surf. A, Physicochem. Eng. Asp., Volume 210 (2002), pp. 159-166

[30] Z. Briceño-Ahumada; W. Drenckhan; D. Langevin Coalescence in draining foams made of very small bubbles, Phys. Rev. Lett., Volume 116 (2016)

[31] L. Saulnier; L. Champougny; G. Bastien; F. Restagno; D. Langevin; E. Rio A study of generation and rupture of soap films, Soft Matter, Volume 10 (2014), pp. 2899-2906

[32] S.T. Tobin; A.J. Meagher; B. Bulfin; M. Mobius; S. Hutzler A public study of the lifetime distribution of soap films, Amer. J. Phys., Volume 79 (2011), pp. 819-824

[33] N. Vandewalle; H. Caps; G. Delon; A. Saint-Jalmes; E. Rio; L. Saulnier; M. Adler; A.L. Biance; O. Pitois; S.C. Addad; R. Hohler; D. Weaire; S. Hutzler; D. Langevin Foam stability in microgravity (A. Meyer; I. Egry, eds.), International Symposium on Physical Sciences in Space, 2011

[34] H. Caps; N. Vandewalle; A. Saint-Jalmes; L. Saulnier; P. Yazhgur; E. Rio; A. Salonen; D. Langevin How foams unstable on Earth behave in microgravity?, Colloids Surf. A, Physicochem. Eng. Asp., Volume 457 (2014), pp. 392-396

[35] H. Caps; G. Delon; N. Vandewalle; R.M. Guillermic; O. Pitois; A.L. Biance; L. Saulnier; P. Yazhgur; E. Rio; A. Salonen; D. Langevin Does water foam exist in microgravity?, Europhys. News, Volume 45 (2014), pp. 22-25

[36] R. Tuinier; C.G.J. Bisperink; C. van den Berg; A. Prins Transient foaming behavior of aqueous alcohol solutions as related to their dilational surface properties, J. Colloid Interface Sci., Volume 179 (1996), pp. 327-334

[37] N.D. Denkov Mechanisms of foam destruction by oil-based antifoams, Langmuir, Volume 20 (2004), pp. 9463-9505

[38] P. Yazhgur; D. Langevin; H. Caps; V. Klein; E. Rio; A. Salonen How antifoams act: a microgravity study, npj Microgravity, Volume 1 (2015), p. 15004

[39] V. Bergeron; P. Cooper; C. Fischer; J. Giermanska-Kahn; D. Langevin; A. Pouchelon Polydimethylsiloxane (PDMS)-based antifoams, Colloids Surf. A, Physicochem. Eng. Asp., Volume 122 (1997), pp. 103-120

[40] P. Taylor Ostwald ripening in emulsions, Adv. Colloid Interface Sci., Volume 75 (1998), pp. 107-163

[41] J. Lambert; I. Cantat; R. Delannay; R. Mokso; P. Cloetens; J.A. Glazier; F. Graner Experimental growth law for bubbles in a moderately “Wet” 3D liquid foam, Phys. Rev. Lett., Volume 99 (2007)

[42] S. Hilgenfeldt; S.A. Koehler; H.A. Stone Dynamics of coarsening foams: accelerated and self-limiting drainage, Phys. Rev. Lett., Volume 86 (2001), p. 4704

[43] A. Cervantes Martinez; E. Rio; G. Delon; A. Saint-Jalmes; D. Langevin; B.P. Binks On the origin of the remarkable stability of aqueous foams stabilised by nanoparticles: link with microscopic surface properties, Soft Matter, Volume 4 (2008), pp. 1531-1535

[44] Z. Briceño-Ahumada; D. Langevin On the influence of surfactant on the coarsening of aqueous foams, Adv. Colloid Interface Sci. (2016) (in press) | DOI

[45] N. Isert; G. Maret; C.M. Aegerter Coarsening dynamics of three-dimensional levitated foams: from wet to dry, Eur. Phys. J. E, Volume 36 (2013), p. 116

[46] M. Le Merrer; S. Cohen-Addad; R. Hoehler Duration of bubble rearrangements in a coarsening foam probed by time-resolved diffusing-wave spectroscopy: impact of interfacial rigidity, Phys. Rev. E, Volume 88 (2013)

Cité par Sources :

Commentaires - Politique