Comptes Rendus
Basic and applied researches in microgravity / Recherches fondamentales et appliquées en microgravité
Combustion in microgravity: The French contribution
Comptes Rendus. Mécanique, Volume 345 (2017) no. 1, pp. 86-98.

Microgravity (drop towers, parabolic flights, sounding rockets and space stations) are particularly relevant to combustion problems given that they show high-density gradients and in many cases weak forced convection. For some configurations where buoyancy forces result in complex flow fields, microgravity leads to ideal conditions that correspond closely to canonical problems, e.g., combustion of a spherical droplet in a far-field still atmosphere, Emmons' problem for flame spreading over a solid flat plate, deflagration waves, etc. A comprehensive chronological review on the many combustion studies in microgravity was written first by Law and Faeth (1994) and then by F.A. Williams (1995). Later on, new recommendations for research directions have been delivered. In France, research has been managed and supported by CNES and CNRS since the creation of the microgravity research group in 1992. At this time, microgravity research and future activities contemplated the following:

  • – Droplets: the “D2 law” has been well verified and high-pressure behavior of droplet combustion has been assessed. The studies must be extended in two main directions: vaporization in mixtures near the critical line and collective effects in dense sprays.
  • – Flame spread: experiments observed blue flames governed by diffusion that are in accordance with Emmons' theory. Convection-dominated flames showed significant departures from the theory. Some theoretical assumptions appeared controversial and it was noted that radiation effects must be considered, especially when regarding the role of soot production in quenching.
  • – Heterogeneous flames: two studies are in progress, one in Poitiers and the other in Marseilles, about flame/suspension interactions.
  • – Premixed and triple flames: the knowledge still needs to be complemented. Triple flames must continue to be studied and understanding of “flame balls” still needs to be addressed.

Published online:
DOI: 10.1016/j.crme.2016.10.012
Keywords: Microgravity, Combustion, Flames

Roger Prud'homme 1, 2; Guillaume Legros 1, 2; José L. Torero 3

1 Sorbonne Universités, Université Pierre-et-Marie-Curie (Université Paris-6), UMR 7190, Institut Jean-Le-Rond-d'Alembert, 75005, Paris, France
2 CNRS, UMR 7190, Institut Jean Le-Rond-d'Alembert, 75005, Paris, France
3 School of Civil Engineering, The University of Queensland, QLD 4072, Australia
     author = {Roger Prud'homme and Guillaume Legros and Jos\'e L. Torero},
     title = {Combustion in microgravity: {The} {French} contribution},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {86--98},
     publisher = {Elsevier},
     volume = {345},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crme.2016.10.012},
     language = {en},
AU  - Roger Prud'homme
AU  - Guillaume Legros
AU  - José L. Torero
TI  - Combustion in microgravity: The French contribution
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 86
EP  - 98
VL  - 345
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2016.10.012
LA  - en
ID  - CRMECA_2017__345_1_86_0
ER  - 
%0 Journal Article
%A Roger Prud'homme
%A Guillaume Legros
%A José L. Torero
%T Combustion in microgravity: The French contribution
%J Comptes Rendus. Mécanique
%D 2017
%P 86-98
%V 345
%N 1
%I Elsevier
%R 10.1016/j.crme.2016.10.012
%G en
%F CRMECA_2017__345_1_86_0
Roger Prud'homme; Guillaume Legros; José L. Torero. Combustion in microgravity: The French contribution. Comptes Rendus. Mécanique, Volume 345 (2017) no. 1, pp. 86-98. doi : 10.1016/j.crme.2016.10.012.

[1] L. Landau; E. Lifchitz Mécanique des fluides, Éditions MIR, 1971

[2] F.A. Williams Combustion Science, 1995 (ELGRA's “GRAND JURY”)

[3] H.F. Coward, G.W. Jones, Limits of flammability of gases and vapors, Bulletin 503, US Bureau of Mines, US Government Printing Office, Washington, DC, 1952.

[4] S. Kumagai; T. Sakai; S. Okajima Combustion of fuel droplets in a freely falling chamber, Proc. 13th Symposium (International) on Combustion, The Combustion Institute, 1971, pp. 779-785

[5] G.A.E. Godsave Studies of the combustion of drops in a fuel spray: the burning of single drops of fuel, 4th Symposium (International) on Combustion, The Combustion Institute, 1953, pp. 818-830

[6] D.B. Spalding The combustion of liquid fuels, 4th Symposium (International) on Combustion, The Combustion Institute, 1953, pp. 847-864

[7] J.H. Kimzey, Flammability during weightlessness, NASA TM-X-58001, N66–29225, May 1966.

[8] T.H. Cochran; W.J. Masica An investigation of gravity effects on laminar gas jet diffusion flames, Proc. 13th Symposium (International) on Combustion, The Combustion Institute, 1970, pp. 821-829

[9] P. Pelcé; P. Clavin Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames, J. Fluid Mech., Volume 124 (1982), pp. 219-237

[10] P.D. Ronney Effect of gravity on laminar premixed gas combustion II: ignition and extinction phenomena, Combust. Flame, Volume 62 (1985), pp. 121-133

[11] Groupe de travail : Sciences physiques en microgravité, Éd. CNES (1985), pp. 91-99 (Deauville, France, 28–31 octobre 1985)

[12] R. Prud'homme Flammes de prémélange air–méthane en microgravité : éléments théoriques, Ann. Chim. Fr., Volume 17 (1992), pp. 13-26

[13] I. Gökalp; C. Chauveau; X. Chesneau Droplet combustion in microgravity (H.U. Walter, ed.), Hydromechanics and Heat/Mass Transfer in Microgravity, Gordon & Breach Sci. Publ. Ltd, 1992

[14] F.B. Carleton; F.J. Weinberg Electric field-induced flame convection in the absence of gravity, Nature, Volume 330 (1987), pp. 635-636

[15] C.S. Tarifa; A. Liñan; J.J. Salva; G. Corchero; G.L. Juste; F. Esteban Heterogeneous combustion processes under microgravity conditions, Combustion Experiments During KC-135 Parabolic Flights, ESA SP-1113, 1989

[16] M.Y. Choi; F.L. Drier; J.B. Haggard Observation on a slow burning regime for hydrocarbon droplets: n-heptane/air results, 23rd Symposium (International) on Combustion, The Combustion Institute, 1990, pp. 1597-1604

[17] D. Beysens; R. Blanc; B. Zappoli Physique des fluides et des milieux aléatoires, Éd. CNES, 1991 (Rapport du Séminaire de prospective microgravité « Sciences physiques et Sciences de la vie », Aix-en-Provence, 3–5 avril)

[18] P. Guenoun; D. Langevin; B. Zappoli Sciences de la matière, 16–19 March 2009, Biarritz, France (2010)

[19] J.-M. Citerne; H. Dutilleul; K. Kizawa; O. Fujita; M. Kikuchi; G. Jomaas; G. Legros Propagation de flamme sur des échantillons de révolution cylindrique : premiers essais en micropesanteur, Colloque annuel du GdR MFA, 2014

[20] R. Thimothée; C. Chauveau; F. Halter Propagation d'une flamme dans un milieu diphasique (brouillards) : caractérisation des instabilités cellulaires, Colloque annuel du GdR MFA, 2014

[21] C. Nicoli; P. Haldenwang; B. Denet Flammes de brouillards riches, Colloque annuel du GdR MFA, 2014

[22] Fifth International Microgravity Combustion Workshop (1999), NASA/Glenn Research Center, Cleveland, Ohio, May 18–20, NASA/CP – 1999 – 208917.

[23] First International Symposium on Microgravity Research & Applications in Physical Sciences and Biotechnology, ESA/SUN, Sorrento, Italy, 10–15 September 2000.

[24] J. Chim. Phys. Phys.-Chim. Biol., 96 (1999) no. 6

[25] J. Phys. IV, 11 (2001) no. Pr6 (EDP Sciences)

[26] C. R. Mecanique, 332 (2004) no. 5–6, pp. 319-486

[27] Méc. Ind. (numéro thématique), 5 (2004)

[28] I.B. Zeldovich; D.A. Frank-Kamenetzki A theory of thermal propagation of flame, Acta Physicochim. SSSR, Volume 9 (1938), pp. 341-350

[29] F.A. Williams Combustion Theory, The Benjamin Cummings Pub. Cy., Inc., 1985

[30] R. Prud'homme Flows of Reactive Fluids, Fluid Mechanics and Its Applications, vol. 94, Springer, 2010

[31] M. Barrère; J. Fabri Ondes de choc avec combustion (A.L. Jaumotte, ed.), Chocs et ondes de choc, Masson, 1971

[32] P. Clavin; G. Joulin Premixed flames in large and high intensity turbulent flow, J. Phys. Lett., Volume 44 (1983) no. 1, pp. 1-12

[33] T. Echekki; J.H. Chen Unsteady strain rate and curvature effects in turbulent premixed methane/air flames, Combust. Flame, Volume 106 (1996), pp. 184-202

[34] N. Peters Turbulent Combustion, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, UK, 2000

[35] V. Nayagam; F.A. Williams Lewis-number effects on edge flame propagation, J. Fluid Mech., Volume 458 (2002), pp. 219-228

[36] J. Buckmaster Edge-flames and their stability, Combust. Sci. Technol., Volume 115 (1996), pp. 41-68

[37] B. Abramson; W.A. Sirignano Droplet vaporization model for spray combustion calculations, Int. J. Heat Mass Transf., Volume 32 (1989), pp. 1605-1618

[38] J.S. Chin; A.H. Lefebvre The role of the heat-up period in fuel drop evaporation, Int. J. Turbo Jet-Engines, Volume 2 (1985), pp. 315-325

[39] T. Vietoris Étude de la combustion quasi-stationnaire d'un combustible solide soumis à un écoulement parallèle à sa surface, Université de Poitiers, 30 juin 1999 (Thèse de doctorat)

[40] G. Legros; A. Fuentes; J. Baillargeat; P. Joulain; J.-P. Vantelon; J.L. Torero Three-dimensional recomposition of the absorption field inside a non-buoyant sooting diffusion flame, Opt. Lett., Volume 30 (2005), pp. 3311-3313

[41] A. Fuentes; G. Legros; A. Claverie; P. Joulain; J.-P. Vantelon; J.L. Torero Interactions between soot and CH in a laminar boundary layer type diffusion flame in microgravity, Proc. Combust. Inst., Volume 31 (2007), pp. 2685-2692

[42] G. Legros; A. Fuentes; S. Rouvreau; P. Joulain; B. Porterie; J.L. Torero Transport mechanisms controlling soot production inside a non-buoyant laminar diffusion flame, Proc. Combust. Inst., Volume 32 (2009), pp. 2461-2470

[43] D. Beysens; B. Zappoli Sciences de la matière en micropesanteur : la combustion, Arcachon, France, 9–12 mars 1998, Éd. CNES (1999), pp. 223-225

[44] O. Bozier; B. Veyssière Study of the mechanisms of dust suspension generation in a closed vessel under microgravity conditions, Microgravity Sci. Technol., Volume 22 (2010), pp. 233-248

[45] Y. Mauriot; R. Prud'homme Assessment of evaporation equilibrium and stability concerning an acoustically excited drop in combustion products, C. R. Mecanique, Volume 342 (2014), pp. 240-253

[46] J. Daou; P. Haldenwang Lifetime and dynamics of a pocket of dense gas in a hot gas flow, Eur. J. Mech. B, Fluids, Volume 16 (1997), pp. 141-161

[47] R. Borghi, F. Lacas, Modeling of liquid-propellant spray combustion in rocket engine combustor, in: Proc. of the Second Int. Symp. on Liquid Rocket Propulsion, ONERA, Châtillon, France, 19–21 June 1995, pp. 7.1–7.26.

[48] F. Renaud, B. Legrand, E. Shafirovich, C. Chauveau, I. Gökalp, Combustion et vaporisation de gouttes isolées in: R. Prud'homme, B. Zappoli (Eds.), Groupement de recherche 2258 CNRS/CNES Phénomènes de transport et transitions de phase en micropesanteur (P2TPM), Bilan à quatre ans 2000–2003, September 2003, pp. 85–88.

[49] C. Chauveau, F. Halter, I. Gökalp, Vaporization in three-dimensional droplet arrays: effects of the fuel vapor saturation, in: Proc. 10th International Conference on Liquid Atomization and Spray Systems, ICLASS06, Kyoto, Japan, 27 August–1 September 2006.

[50] C. Chauveau; M. Birouk; I. Gökalp An analysis of the d2-law departure during droplet evaporation in microgravity, Int. J. Multiphas. Flow, Volume 37 (2011) no. 3, pp. 252-259

[51] J.-S. Wu; Y.-J. Liu; H.-J. Sheen Effects of ambient turbulence and fuel properties on the evaporation rate of single droplets, Int. J. Heat Mass Transf., Volume 44 (2001), pp. 4593-4603

[52] R. Prud'homme Flows and Chemical Reactions in Heterogeneous Mixtures, Fluid Mechanics Series, ISTE – Wiley, 2014 (ISBN: 978-1-84821-785-0)

[53] C. Nicoli; P. Haldenwang; S. Suard Effect of substituting fuel spray for fuel gas on flame stability in lean premixtures, Combust. Flame, Volume 149 (2007), pp. 295-313

[54] C. Nicoli; P. Haldenwang A resonant response of self-pulsating spray-flame submitted to acoustic wave, Combust. Sci. Technol., Volume 182 (2010), pp. 559-573

[55] C. Nicoli; B. Denet; P. Haldenwang Lean flame dynamics through a 2D-lattice of alkane droplets in air, Combust. Sci. Technol., Volume 186 (2014), pp. 103-119

[56] Y.-C. Chen; R.W. Bilger Stabilization mechanisms of lifted laminar flames in axisymmetric jet flows, Combust. Flame, Volume 123 (2000), pp. 23-45

[57] W.-H. Chen; L.J. Jiang Double, triple and tetra-brachial flame structures around a pair of droplets in tandem, Combust. Sci. Technol., Volume 151 (2000), pp. 105-132

[58] P.D. Ronney; M.S. Wu; H.G. Pearlman; K.J. Weiland Experimental study of flame balls in space: results from STS-83, AIAA J., Volume 36 (1998), pp. 1361-1368

[59] R. Prud'homme Vaporisation et combustion de gouttes dans les moteurs, Éd. Techniques de l'Ingénieur, Traité de mécanique, BM 2 521, 2015

[60] R. Prud'homme Flows and Chemical Reactions in an Electromagnetic Field, Fluid Mechanics Series, ISTE – Wiley, 2014 (ISBN: 978-1-84821-786-7)

[61] B. Schirmer; A. Melling; G. Brenn Experimental investigation of the water vapour concentration near phase boundaries with evaporation, Meas. Sci. Technol., Volume 15 (2004), pp. 1671-1682

[62] R. Prud'homme; M. Habiballah; L. Matuszewski; Y. Mauriot; A. Nicole Theoretical analysis of dynamic response of a vaporizing droplet to acoustic oscillations, J. Propuls. Power, Volume 26 (2010), pp. 74-83

[63] M. Saito; M. Hoshikawa; M. Sato Enhancement of evaporation/combustion rate coefficient of a single fuel droplet by acoustic oscillation, Fuel, Volume 75 (1996), pp. 669-674

[64] M. Tanabe; M. Toshifumi; K. Aoki; K. Satoh; T. Fujimori; J. Sato Influence of standing sound waves on droplet combustion, Proc. Combust. Inst., Volume 28 (2000), pp. 1007-1013

[65] M. Shinoda; E. Yamada; T. Kajimoto; H. Yamashita; K. Kitagawa Mechanism of magnetic field effect on OH density distribution in a methane–air premixed jet flame, Proc. Combust. Inst., Volume 30 (2005), pp. 277-284

[66] C. Lorin Théorie de la compensation magnétique. Conception, dimensionnement et contrôle de dispositifs d'environnement microgravitationnel, Institut national polytechnique de Lorraine, Vandœuvre-lès-Nancy, France, 2008 (Thèse de doctorat)

[67] C. Lorin; A. Mailfert Magnetic levitation in two-dimensional with translational invariance, J. Appl. Phys., Volume 104 (2008), p. 103904

[68] R. Wunenburger; D. Chatain; Y. Garrabos; D. Beysens Magnetic compensation of gravity forces in (p-) hydrogen near its critical point: application to weightless conditions, Phys. Rev. E, Volume 62 (2000), pp. 469-476

[69] G. Pichavant; B. Cariteau; D. Chatain; V. Nikolayev; D. Beysens Magnetic compensation of gravity experiments with oxygen, Microgravity Sci. Technol., Volume 21 (2009), pp. 129-133

[70] G. Pichavant; D. Beysens; D. Chatain; D. Communal; C. Lorin; A. Mailfert Using superconducting magnets to reproduce quick variations of gravity in liquid oxygen, Microgravity Sci. Technol., Volume 23 (2011), pp. 129-133

[71] V.L. Chechulin About the effect of magnetic field on the quality of combustion of liquid organic fuel, Russ. J. Appl. Chem., Volume 82 (2009), pp. 748-750

[72] A. Jocher; H. Pitsch; T. Gomez; G. Legros Modification of sooting tendency by magnetic effects, Proc. Combust. Inst., Volume 35 (2015), pp. 889-895

[73] G. Legros; J.L. Torero Phenomenological model of soot production inside a non-buoyant laminar diffusion flame, Proc. Combust. Inst., Volume 35 (2015), pp. 2545-2553

[74] Microgravity Combustion, Fire in Free Fall (H. Ross, ed.), Academic Press, UK, 2001

[75] J. Bellan Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays, Prog. Energy Combust. Sci., Volume 26 (2000), pp. 329-366

[76] K.-L. Pan; J.-W. Li; C.-P. Chen; C.-H. Wang On droplet combustion of biodiesel fuel mixed with diesel/alkanes in microgravity condition, Combust. Flame, Volume 156 (2009), pp. 1926-1936

[77] T.X. Li; D.L. Zhu; N.K. Akafuah; K. Saito; C.K. Law Synthesis, droplet combustion, and sooting characteristics of biodiesel produced from waste vegetable oils, Proc. Combust. Inst., Volume 33 (2011), pp. 2039-2046

[78] C. Chauveau; I. Gökalp; D. Segawa; T. Kadota; H. Enomoto Effects of reduced gravity on methanol droplet combustion at high pressures, Proc. Combust. Inst., Volume 28 (2000), pp. 1071-1077

[79] C. Chauveau, I. Gökalp, F. Halter, Etude des effets d'interaction sur la vaporisation des gouttes de combustible plongées dans un milieu à haute température : expériences en gravité réduite ; GDR MFA (CNES/CNRS), March 2007, pp. 75–80.

[80] H. Gassemi; S.W. Baek; Q.S. Khan Experimental study of binary droplet evaporation at elevated pressures and temperatures, Combust. Sci. Technol., Volume 178 (2006) no. 6, pp. 1031-1053

[81] C. Chauveau; M. Birouk; I. Gökalp Why the d2-law does not hold during droplet vaporization in microgravity conditions, Mugla, Turkey (2007)

[82] I. Couëdel, A. Mezeghrane, M. Mikikian, A.A. Samarian, I. Boufendi, On-ground measurement of dust residual charge in dusty plasma afterglow using thermophoretic gravity compensation, in: 9th International Workshop on the Interrelationship Between Plasma Experiments in Laboratory and Space (IPELS 2007), Cairns (Australia), 5–10 August 2007.

[83] C. Chauveau, F. Halter, A. Lalonde, I. Gökalp, An experimental study on the droplet vaporization effect of heat conduction through the support, in: Proceedings of the 22nd Annual Conference on Liquid Atomization and Spray Systems (ILASS-Europ'08), Como, Italy, 8–10 September 2008.

[84] N. Bouvet; L. Pillier; D. Davidenko; C. Chauveau; I. Gökalp Particle image velocimetry for the determination of fundamental flame velocity: methodology validation and application to methane–air mixtures, Vienna, Austria (2009)

[85] T. Tahtouh; F. Halter; C. Mounaîm-Rousselle Measurement of laminar burning speeds and Markstein lengths using a novel methodology, Combust. Flame, Volume 156 (2009) no. 9, pp. 1736-1743

[86] C. Nicoli, P. Haldenwang, B. Denet, Numerical study of rich spray-flame, in: European Combustion Meeting (ECM2015), Budapest, Hungary, 30 March–2 April 2015.

[87] C. Nicoli, P. Haldenwang, B. Denet, Numerical study of alkane–air spray combustion, in: 15th International Conference on Numerical Combustion (INCN15), Avignon, France, 19–22 April 2015.

[88] C. Nicoli, P. Haldenwang, B. Denet, Numerical results on spray flame dynamics (session posters), in: Ninth Mediterranean Combustion Symposium (MCS9), Rhodes, Greece, 7–11 June 2015.

[89] C. Nicoli; B. Denet; P. Haldenwang Rich spray-flame propagating through a 2D-lattice of alkane droplets in air, Combust. Flame, Volume 162 (2015) no. 12, pp. 4598-4611

[90] C. Nicoli; P. Haldenwang; B. Denet Spray-flame dynamics in a rich droplet array, Flow Turbul. Combust., Volume 96 (2016) no. 2, pp. 377-389

[91] F. Carle; B. Sobac; D. Brutin Hydrothermal waves in ethanol droplet evaporating under terrestrial and reduced gravity levels, J. Fluid Mech., Volume 712 (2012), pp. 614-623

[92] S. Semenov; F. Carle; M. Medale; D. Brutin Contribution of convective transport to evaporation of sessile droplets: empirical model, Int. J. Therm. Sci., Volume 101 (2016), pp. 35-47

[93] W.R. Hu et al. Space program SJ-10 of microgravity, Research. Microgravity Sci. Technol., Volume 26 (2014), pp. 159-169

[94] X. Chen; Z.Q. Zhu; Q.S. Liu; X.W. Wang Thermodynamic behaviors of macroscopic liquid droplets evaporation from heated substrates, Microgravity Sci. Technol., Volume 04 (2015) | DOI

[95] B. Sobac; D. Brutin Thermal effects of the substrate on water droplet evaporation, Phys. Rev. E, Volume 86 (2012)

[96] J.-M. Citerne; H. Dutilleul; K. Kizawa; M. Nagachi; O. Fujita; M. Kikuchi; G. Jomaas; S. Rouvreau; J.L. Torero; G. Legros Fire safety in space – investigating flame spread interaction over wires, Acta Astronaut. (2016) | DOI

[97] L. Hu; Y. Zhang; K. Yoshioka; H. Izumo; O. Fujita Flame spread over electric wire with high thermal conductivity metal core at different inclination, Proc. Combust. Inst., Volume 35 (2015) no. 3, pp. 26107-26143

[98] R. Thimothée; M. Nassouri; C. Chauveau; F. Halter; I. Gökalp Characterization of an outwardly propagating flame in an aerosol under reduced gravity condition, Proc. 26th European Conference on Liquid Atomization and Spray Systems, 2014

[99] S. Préau; R. Prud'homme; J. Ouazzani; B. Zappoli Supercritical density relaxation as a new approach of droplet vaporization, Phys. Fluids, Volume 16 (2004) no. 11, pp. 4075-4087

[100] L. Quettier; H. Félice; A. Mailfert; D. Chatain; D. Beysens Magnetic compensation of gravity forces in liquid/gas mixtures: surpassing intrinsic limitations of a superconducting magnet by using ferromagnetic inserts, Eur. Phys. J. Appl. Phys., Volume 32 (2005) no. 3, pp. 167-175 (published online: 26 October 2005) | DOI

[101] C.K. Law; G.M. Faeth Opportunities and challenges of combustion in microgravity, Prog. Energy Combust. Sci., Volume 20 (1994) no. 1, pp. 65-113

Cited by Sources:

Comments - Policy