The absence of gravity during space flight can alter cardio-vascular functions partially due to reduced physical activity. This affects the overall hemodynamics, and in particular the level of shear stresses to which blood vessels are submitted. Long-term exposure to space environment is thus susceptible to induce vascular remodeling through a mechanotransduction cascade that couples vessel shape and function with the mechanical cues exerted by the circulating cells on the vessel walls. Central to such processes, the glycocalyx – i.e. the micron-thick layer of biomacromolecules that lines the lumen of blood vessels and is directly exposed to blood flow – is a major actor in the regulation of biochemical and mechanical interactions. We discuss in this article several experiments performed under microgravity, such as the determination of lift force and collective motion in blood flow, and some preliminary results obtained in artificial microfluidic circuits functionalized with endothelium that offer interesting perspectives for the study of the interactions between blood and endothelium in healthy condition as well as by mimicking the degradation of glycocalyx caused by long space missions. A direct comparison between experiments and simulations is discussed.
L'absence de gravité lors de longues missions spatiales peut altérer le fonctionnement cardiovasculaire à cause, en partie, de l'absence d'activité physique. Ceci a des répercussions sur l'hémodynamique, et en particulier sur le niveau de contraintes de cisaillement auxquelles sont soumis les vaisseaux sanguins. Un séjour de longue durée dans l'espace peut conduire à un processus de remodelage vasculaire via une cascade complexe de mécanotransduction qui couple la morphologie des vaisseaux et leur fonction aux signaux mécaniques dus au passage des corpuscules sanguins le long des parois vasculaires. Dans ces processus, le glycocalyx – brosse de biopolymères épaisse d'environ un micromètre, tapissant la paroi endothéliale et directement exposée au flux sanguin – joue un rôle central dans la régulation des interactions mécano-biochimiques. Dans cet article, nous présentons des résultats expérimentaux obtenus en microgravité concernant la force de portance s'exerçant sur les globules rouges et sur les vésicules ainsi que les mouvements collectifs, puis quelques résultats préliminaires portant sur la fonctionnalisation de circuits artificiels par des brosses de polymères et par des cellules endothéliales. Ceci offre des perspectives intéressantes pour étudier l'interaction entre écoulement sanguin et endothélium, sain ou altéré à la suite d'une dégradation du glycocalyx mimant les effets de longues missions spatiales. Une comparaison directe entre expériences et simulations sera présentée.
Accepted:
Published online:
Mots-clés : Écoulement sanguin, Microgravité, Force de portance, Brosse de polymère, Endothélium
Lionel Bureau 1, 2; Gwennou Coupier 1, 2; Frank Dubois 3; Alain Duperray 4, 5; Alexander Farutin 1, 2; Christophe Minetti 3; Chaouqi Misbah 1, 2; Thomas Podgorski 1, 2; Daria Tsvirkun 1, 2, 4, 5, 6; Mikhail Vysokikh 6
@article{CRMECA_2017__345_1_78_0, author = {Lionel Bureau and Gwennou Coupier and Frank Dubois and Alain Duperray and Alexander Farutin and Christophe Minetti and Chaouqi Misbah and Thomas Podgorski and Daria Tsvirkun and Mikhail Vysokikh}, title = {Blood flow and microgravity}, journal = {Comptes Rendus. M\'ecanique}, pages = {78--85}, publisher = {Elsevier}, volume = {345}, number = {1}, year = {2017}, doi = {10.1016/j.crme.2016.10.011}, language = {en}, }
TY - JOUR AU - Lionel Bureau AU - Gwennou Coupier AU - Frank Dubois AU - Alain Duperray AU - Alexander Farutin AU - Christophe Minetti AU - Chaouqi Misbah AU - Thomas Podgorski AU - Daria Tsvirkun AU - Mikhail Vysokikh TI - Blood flow and microgravity JO - Comptes Rendus. Mécanique PY - 2017 SP - 78 EP - 85 VL - 345 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2016.10.011 LA - en ID - CRMECA_2017__345_1_78_0 ER -
%0 Journal Article %A Lionel Bureau %A Gwennou Coupier %A Frank Dubois %A Alain Duperray %A Alexander Farutin %A Christophe Minetti %A Chaouqi Misbah %A Thomas Podgorski %A Daria Tsvirkun %A Mikhail Vysokikh %T Blood flow and microgravity %J Comptes Rendus. Mécanique %D 2017 %P 78-85 %V 345 %N 1 %I Elsevier %R 10.1016/j.crme.2016.10.011 %G en %F CRMECA_2017__345_1_78_0
Lionel Bureau; Gwennou Coupier; Frank Dubois; Alain Duperray; Alexander Farutin; Christophe Minetti; Chaouqi Misbah; Thomas Podgorski; Daria Tsvirkun; Mikhail Vysokikh. Blood flow and microgravity. Comptes Rendus. Mécanique, Basic and applied researches in microgravity – A tribute to Bernard Zappoli’s contribution, Volume 345 (2017) no. 1, pp. 78-85. doi : 10.1016/j.crme.2016.10.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.10.011/
[1] The dynamics of blood biochemical parameters in cosmonauts during long-term space flights, Acta Astronaut., Volume 42 (1998), pp. 247-253
[2] et al. Effects of long-term space flight on erythrocytes and oxidative stress of rodents, PLoS ONE, Volume 7 (2012)
[3] Hydrodynamic lift of vesicles under shear flow in microgravity, Europhys. Lett., Volume 83 (2008), p. 24002
[4] Fully automated digital holographic processing for monitoring the dynamics of a vesicle suspension under shear flow, Biomed. Opt. Express, Volume 5 (2014), pp. 1554-1568
[5] Lift and down-gradient shear-induced diffusion in red blood cell suspensions, Phys. Rev. Lett., Volume 110 (2013)
[6] Flow reduction in microchannels coated with a polymer brush, Langmuir, Volume 28 (2012), pp. 13758-13764
[7] Red blood cell dynamics in polymer brush-coated microcapillaries: a model of endothelial glycocalyx in vitro, Biomicrofluidics, Volume 8 (2014)
[8] 3d numerical simulations of vesicle and inextensible capsule dynamics, J. Comput. Phys., Volume 275 (2014), pp. 539-568
[9] Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, Cambridge, UK, 1992
[10] Fluid vesicles in shear flow, Phys. Rev. Lett., Volume 77 (1996), pp. 3685-3688
[11] et al. Hydrodynamic interaction between two identical capsules in simple shear flow, J. Fluid Mech., Volume 573 (2007) no. 1, pp. 149-169
[12] Lift force and dynamical unbinding of adhering vesicles under shear flow, Phys. Rev. Lett., Volume 83 (1999), pp. 880-883
[13] A spectral boundary integral method for flowing blood cells, J. Comput. Phys., Volume 229 (2010) no. 10, pp. 3726-3744
[14] Three-dimensional vesicles under shear flow: numerical study of dynamics and phase diagram, Phys. Rev. E, Volume 83 (2011)
[15] 3d vesicle dynamics simulations with a linearly triangulated surface, J. Comput. Phys., Volume 230 (2011) no. 4, pp. 1020-1034
[16] A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2d, J. Comput. Phys., Volume 228 (2009) no. 7, pp. 2334-2353
[17] Axisymmetric boundary element method for vesicles in a capillary, J. Comput. Phys., Volume 289 (2015), pp. 62-82
[18] Vacillating breathing and tumbling of vesicles under shear flow, Phys. Rev. Lett., Volume 96 (2006)
[19] Analytical progress in the theory of vesicles under linear flow, Phys. Rev. E, Volume 81 (2010)
[20] Vesicles and red blood cells: from individual dynamics to rheology, C. R. Physique, Volume 10 (2009) no. 1, p. 775
[21] Dynamical and rheological properties of soft colloid suspensions, Curr. Opin. Colloid Interface Sci., Volume 19 (2014) no. 6, pp. 594-610
[22] Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease, Soft Matter, Volume 9 (2013), pp. 28-37
[23] Flow dynamics of red blood cells and their biomimetic counterparts, C. R. Physique, Volume 14 (2013) no. 6, pp. 451-458 (thematic issue: Living fluids/Fluides vivants)
[24] Fluid vesicles in flow, Adv. Colloid Interface Sci., Volume 208 (2014), pp. 129-141 (special issue in honour of Wolfgang Helfrich)
[25] Numerical simulation of flowing blood cells, Annu. Rev. Fluid Mech., Volume 46 (2014), pp. 67-95
[26] Motion and deformation of elastic capsules and vesicles in flow, Annu. Rev. Fluid Mech., Volume 48 (2016), pp. 25-52
[27] Recherches sur les causes du mouvement du sang dans les vaisseaux capillaires, C. R. Hebd. Séances Acad. Sci. Paris, Volume 1 (1835), pp. 554-560
[28] Red cell motions and wall interactions in tube flow, Fed. Proc., Volume 30 (1971), p. 1578
[29] Separation of blood cells using hydrodynamic lift, Appl. Phys. Lett., Volume 100 (2012)
[30] The lift on a tank-treading ellipsoidal cell in a shear flow, J. Phys. II France, Volume 7 (1997), pp. 1533-1540
[31] Noninertial lateral migration of vesicles in bounded Poiseuille flow, Phys. Fluids, Volume 20 (2008), p. 111702
[32] Dynamics of a viscous vesicle in linear flows, Phys. Rev. E, Volume 75 (2007)
[33] Analytical and numerical study of three main migration laws for vesicles under flow, Phys. Rev. Lett., Volume 110 (2013)
[34] Efficiency of size-dependent particle separation by pinched flow fractionation, Microfluid. Nanofluid., Volume 13 (2012), p. 697
[35] Unilamellar vesicle formation and encapsulation by microfluidic jetting, Proc. Natl. Acad. Sci. USA, Volume 105 (2008), pp. 4697-4702
[36] Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design, Soft Matter, Volume 7 (2011), p. 4610
[37] Shear-induced dispersion in a dilute suspension of rough spheres, J. Fluid Mech., Volume 309 (1996), pp. 211-223
[38] Collision of two deformable drops in shear flow, J. Fluid Mech., Volume 338 (1997), p. 299
[39] Diffusion from an instantaneous point source with a concentration-dependent coefficient, Q. J. Mech. Appl. Math., Volume 12 (1959), p. 407
[40] Pairwise hydrodynamic interactions and diffusion in a vesicle suspension, Phys. Fluids, Volume 26 (2014)
[41] Dynamics of vesicle suspensions in shear flow between walls, Microgravity Sci. Technol., Volume 23 (2011), pp. 263-270
[42] Flow-induced segregation in confined multicomponent suspensions: effects of particle size and rigidity, J. Fluid Mech., Volume 738 (2014), pp. 423-462
[43] Microvascular blood flow resistance: role of endothelial surface layer, Am. J. Physiol., Heart Circ. Physiol., Volume 273 (1997)
[44] Surface wave excitations and backflow effect over dense polymer brushes, Sci. Rep., Volume 6 (2016), p. 22257
[45] Endothelialized microfluidics for studying microvascular interactions in hematologic diseases, J. Vis. Exp., Volume 22 (2012), p. 3958
Cited by Sources:
Comments - Policy