Comptes Rendus
Comments on ‘Large deflection and rotation of Timoshenko beams with frictional end supports under three-point bending’ [Comptes rendus Mecanique 344 (8) (2016) 556–568]
Comptes Rendus. Mécanique, Volume 345 (2017) no. 4, pp. 293-297.

The paper discusses certain limitations of the analytical solution presented in this article [1]. It is demonstrated that the solution is valid only for small deflections of an inextensible beam.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2017.01.004
Keywords: Timoshenko beam, Large deflection, Three-point bending

Milan Batista 1

1 University of Ljubljana, Faculty of Maritime Studies and Transport, Slovenia
@article{CRMECA_2017__345_4_293_0,
     author = {Milan Batista},
     title = {Comments on {{\textquoteleft}Large} deflection and rotation of {Timoshenko} beams with frictional end supports under three-point bending{\textquoteright} {[Comptes} rendus {Mecanique} 344 (8) (2016) 556{\textendash}568]},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {293--297},
     publisher = {Elsevier},
     volume = {345},
     number = {4},
     year = {2017},
     doi = {10.1016/j.crme.2017.01.004},
     language = {en},
}
TY  - JOUR
AU  - Milan Batista
TI  - Comments on ‘Large deflection and rotation of Timoshenko beams with frictional end supports under three-point bending’ [Comptes rendus Mecanique 344 (8) (2016) 556–568]
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 293
EP  - 297
VL  - 345
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2017.01.004
LA  - en
ID  - CRMECA_2017__345_4_293_0
ER  - 
%0 Journal Article
%A Milan Batista
%T Comments on ‘Large deflection and rotation of Timoshenko beams with frictional end supports under three-point bending’ [Comptes rendus Mecanique 344 (8) (2016) 556–568]
%J Comptes Rendus. Mécanique
%D 2017
%P 293-297
%V 345
%N 4
%I Elsevier
%R 10.1016/j.crme.2017.01.004
%G en
%F CRMECA_2017__345_4_293_0
Milan Batista. Comments on ‘Large deflection and rotation of Timoshenko beams with frictional end supports under three-point bending’ [Comptes rendus Mecanique 344 (8) (2016) 556–568]. Comptes Rendus. Mécanique, Volume 345 (2017) no. 4, pp. 293-297. doi : 10.1016/j.crme.2017.01.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.01.004/

[1] D.-K. Li; X.-F. Li Large deflection and rotation of Timoshenko beams with frictional end supports under three-point bending, C. R. Mecanique, Volume 344 (2016) no. 8, pp. 556-568

[2] H.D. Conway The large deflection of simply supported beams, Philos. Mag. Ser. 7, Volume 38 (1947), pp. 905-911

[3] R. Frisch-Fay Flexible Bars, Butterworths Scientific Publications, vol. VIII, Butterworths, London, 1962 (220 p)

[4] Y. Goto; T. Yoshimitsu; M. Obata Elliptic integral solutions of plane elastica with axial and shear deformations, Int. J. Solids Struct., Volume 26 (1990) no. 4, pp. 375-390

[5] A. Humer Exact solutions for the buckling and postbuckling of shear-deformable beams, Acta Mech., Volume 224 (2013) no. 7, pp. 1493-1525

[6] M. Batista Analytical solution for large deflection of Reissner's beam on two supports subjected to central concentrated force, Int. J. Mech. Sci., Volume 107 (2016), pp. 13-20

[7] M. Batista Large deflections of a beam subject to three-point bending, Int. J. Non-Linear Mech., Volume 69 (2015), pp. 84-92

[8] J.G. Freeman Mathematical theory of deflection of beam, Philos. Mag. Ser. 7, Volume 37 (1946) no. 275, pp. 855-862

[9] R. Courant; F. John Introduction to Calculus and Analysis, Wiley, New York, 1965 (2 vols)

[10] H. Irschik; J. Gerstmayr A continuum-mechanics interpretation of Reissner's non-linear shear-deformable beam theory, Math. Comput. Model. Dyn. Syst., Volume 17 (2011) no. 1, pp. 19-29

[11] S.S. Antman Nonlinear Problems of Elasticity, Appl. Math. Sci., Springer, New York, 2005 (xviii+831 p)

Cited by Sources:

Comments - Policy