Comptes Rendus
DEM analysis of the effect of joint geometry on the shear behavior of rocks
Comptes Rendus. Mécanique, Volume 345 (2017) no. 11, pp. 779-796.

In order to comprehensively investigate the effect of different joint geometries on the shear behavior of rocks, the Distinct Element Method (DEM) was utilized with a new bond contact model. A series of direct shear tests on coplanar and non-coplanar jointed rocks was simulated using the PFC2D software, which incorporates our bond contact model. Both coplanar jointed rocks with different joint persistence and non-coplanar ones with different joint inclinations were simulated and investigated numerically. The numerical results were compared and discussed with relevant laboratory tests as well as some reported numerical works. The results show that for coplanar jointed rocks, the peak shear stress decreases nonlinearly with the joint persistence, and the failure process can be divided into four stages: elastic shearing phase, crack propagation, failure of rock bridges, and residual phase. For non-coplanar jointed rocks, as the absolute value of the inclination angle of the rock joints increases, its shear strength increases, changing the failure patterns and the length of new fractures between existing cracks. When the absolute value increases from 15° to 30°, the average shear capacity increases the most as 39%, while the shear capacity increases the least as 2.9% when the absolute value changes from 45° to 60°. There is a good consistency of the failure patterns obtained from experiments and numerical tests. All these demonstrate that the DEM can be further applied to rock mechanics and practical rock engineering with confidence in the future.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2017.07.004
Mots clés : Rock joints, Distinct element method, Particle bonding, Joint geometries, Direct shear test
Mingjing Jiang 1, 2, 3 ; Jun Liu 2, 3 ; Giovanni B. Crosta 4 ; Tao Li 2, 3

1 State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai, 200092, China
2 Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai, 200092, China
3 Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China
4 Department of Earth and Environmental Sciences, Università degli Studi di Milano–Bicocca, Milano, Italy
@article{CRMECA_2017__345_11_779_0,
     author = {Mingjing Jiang and Jun Liu and Giovanni B. Crosta and Tao Li},
     title = {DEM analysis of the effect of joint geometry on the shear behavior of rocks},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {779--796},
     publisher = {Elsevier},
     volume = {345},
     number = {11},
     year = {2017},
     doi = {10.1016/j.crme.2017.07.004},
     language = {en},
}
TY  - JOUR
AU  - Mingjing Jiang
AU  - Jun Liu
AU  - Giovanni B. Crosta
AU  - Tao Li
TI  - DEM analysis of the effect of joint geometry on the shear behavior of rocks
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 779
EP  - 796
VL  - 345
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2017.07.004
LA  - en
ID  - CRMECA_2017__345_11_779_0
ER  - 
%0 Journal Article
%A Mingjing Jiang
%A Jun Liu
%A Giovanni B. Crosta
%A Tao Li
%T DEM analysis of the effect of joint geometry on the shear behavior of rocks
%J Comptes Rendus. Mécanique
%D 2017
%P 779-796
%V 345
%N 11
%I Elsevier
%R 10.1016/j.crme.2017.07.004
%G en
%F CRMECA_2017__345_11_779_0
Mingjing Jiang; Jun Liu; Giovanni B. Crosta; Tao Li. DEM analysis of the effect of joint geometry on the shear behavior of rocks. Comptes Rendus. Mécanique, Volume 345 (2017) no. 11, pp. 779-796. doi : 10.1016/j.crme.2017.07.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.07.004/

[1] A. Ghazvinian; V. Sarfarazi; W. Schubert; M. Blumel A study of the failure mechanism of planar non-persistent open joints using PFC2D, Rock Mech. Rock Eng., Volume 45 (2012), pp. 677-693

[2] C.A. Tang; W.T. Yang; Y.F. Fu; X.H. Xu A new approach to numerical method of modelling geological processes and rock engineering problems—continuum to discontinuum and linearity to nonlinearity, Eng. Geol., Volume 49 (1998), pp. 207-214

[3] Y.H. Hatzor; A.A. Arzi; Y. Zaslavsky; A. Shapira Dynamic stability analysis of jointed rock slopes using the DDA method: King Herod's Palace, Masada, Israel, Int. J. Rock Mech. Min. Sci., Volume 41 (2004), pp. 813-832

[4] Y.P. Li; L.Z. Chen; Y.H. Wang Experimental research on pre-cracked marble under compression, Int. J. Solids Struct., Volume 42 (2005), pp. 2505-2516

[5] E.Z. Lajtai Shear strength of weakness planes in rock, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Volume 6 (1969), p. 499IN7509-508IN8515

[6] E.Z. Lajtai Strength of discontinuous rocks in direct shear, Geotechnique, Volume 19 (1969), pp. 218-233

[7] C. Gehle; H.K. Kutter Breakage and shear behaviour of intermittent rock joints, Int. J. Rock Mech. Min. Sci., Volume 40 (2003), pp. 687-700

[8] R.H.C. Wong; W.L. Leung; S.W. Wang Shear strength studies on rock-like models containing arrayed open joints (D. Elsworth; J.P. Tinucci; K.A. Heasley, eds.), Rock Mechanics in the National Interest, Swets & Zeitlinger Lisse, Leiden, The Netherlands, 2011, pp. 843-849

[9] P. Cao; T.Y. Liu; C.Z. Pu; H. Lin Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression, Eng. Geol., Volume 187 (2015), pp. 113-121

[10] Z. Moradian; H.H. Einstein; G. Ballivy Detection of cracking levels in brittle rocks by parametric analysis of the acoustic emission signals, Rock Mech. Rock Eng., Volume 49 (2016), pp. 1-16

[11] S. Zhang; C.M. Leech FEM analysis on mixed-mode fracture of CSM-GRP, Eng. Fract. Mech., Volume 23 (1986), pp. 521-535

[12] J. Dolbow; T. Belytschko A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., Volume 46 (1999), pp. 131-150

[13] L. Scholtès; F.V. Donzé Modelling progressive failure in fractured rock masses using a 3D discrete element method, Int. J. Rock Mech. Min. Sci., Volume 52 (2012), pp. 18-30

[14] H.Q. Zhang; Z.Y. Zhao; C.A. Tang; L. Song Numerical study of shear behavior of intermittent rock joints with different geometrical parameters, Int. J. Rock Mech. Min. Sci., Volume 43 (2006), pp. 802-816

[15] P.A. Cundall; O.D. Strack A discrete numerical model for granular assemblies, Geotechnique, Volume 29 (1979), pp. 47-65

[16] D. Potyondy; P.A. Cundall A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci., Volume 41 (2004), pp. 1329-1364

[17] N. Cho; C.D. Martin; D.C. Sego A clumped particle model for rock, Int. J. Rock Mech. Min. Sci., Volume 44 (2007), pp. 997-1010

[18] Y.N. Wang; F. Tonon Modeling Lac du Bonnet granite using a discrete element model, Int. J. Rock Mech. Min. Sci., Volume 46 (2009), pp. 1124-1135

[19] S.Q. Yang; Y.H. Huang; H.W. Jing; X.R. Liu Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression, Eng. Geol., Volume 178 (2014), pp. 28-48

[20] S.Q. Yang; X.R. Liu; H.W. Jing Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression, Int. J. Rock Mech. Min. Sci., Volume 63 (2013), pp. 82-92

[21] X.P. Zhang; L. Wong Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach, Rock Mech. Rock Eng., Volume 45 (2012), pp. 711-737

[22] X.P. Zhang; L. Wong Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach, Rock Mech. Rock Eng., Volume 46 (2013), pp. 1001-1021

[23] M.J. Jiang; H. Chen; G.B. Crosta Numerical modeling of rock mechanical behavior and fracture propagation by a new bond contact model, Int. J. Rock Mech. Min. Sci., Volume 78 (2015), pp. 175-189

[24] M.J. Jiang; Y.G. Sun; L.Q. Li; H.H. Zhu Contact behavior of idealized granules bonded in two different interparticle distances: an experimental investigation, Mech. Mater., Volume 55 (2012), pp. 1-15

[25] M.J. Jiang; Y.G. Sun; Y. Xiao An experimental investigation on the mechanical behavior between cemented granules, Geotech. Test. J., Volume 35 (2012), pp. 678-690

[26] M.J. Jiang; H.S. Yu; D. Harris Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses, Int. J. Numer. Anal. Methods Geomech., Volume 30 (2006), pp. 723-761

[27] M.J. Jiang; H.S. Yu; D. Harris A novel discrete model for granular material incorporating rolling resistance, Comput. Geotech., Volume 32 (2005), pp. 340-357

[28] C.D. Martin, University of Manitoba, Winnipeg, Canada (1993), p. 278 (PhD thesis)

[29] C.D. Martin; N.A. Chandler The progressive fracture of Lac du Bonnet granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Volume 31 (1994), pp. 643-659

[30] M.J. Jiang; J.M. Konrad; S. Leroueil An efficient technique for generating homogeneous specimens for DEM studies, Comput. Geotech., Volume 30 (2003), pp. 579-597

[31] Y.C. Wang; P. Mora Modeling wing crack extension: implications for the ingredients of discrete element model, Pure Appl. Geophys., Volume 165 (2008), pp. 609-620

[32] J.F. Hazzard; R.P. Young; S.C. Maxwell Micromechanical modeling of cracking and failure in brittle rocks, J. Geophys. Res., Solid Earth, Volume 105 (2000), pp. 16683-16697

[33] S.W. Bai; W.Z. Ren; D.X. Feng Research on the strength behavior of rock containing coplanar close intermittent joints by direct shear test, Rock Soil Mech., Volume 20 (1999), pp. 10-16

[34] F. da Cruz; S. Emam; M. Prochnow; J.-N. Roux; F. Chevoir Rheophysics of dense granular materials: discrete simulation of plane shear flows, Phys. Rev. E, Volume 72 (2005)

[35] N. Barton; V. Choubey The shear strength of rock joints in theory and practice, Rock Mech. Rock Eng., Volume 10 (1977), pp. 1-54

[36] N. Cho; C.D. Martin; D.C. Sego Development of a shear zone in brittle rock subjected to direct shear, Int. J. Rock Mech. Min. Sci., Volume 45 (2008), pp. 1335-1346

[37] S.H. Liu Simulating a direct shear box test by DEM, Can. Geotech. J., Volume 43 (2006), pp. 155-168

[38] L. Zhang; C. Thornton A numerical examination of the direct shear test, Geotechnique, Volume 57 (2007), pp. 343-354

[39] Y.M. Liu, Tongji University, Shanghai, China (2007), p. 152 (Ph.D. thesis)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Cracking behavior and local stress characteristics around the opening surrounded by two intermittent joints: experiment and numerical simulation

Yuan-Chao Zhang; Yu-Jing Jiang; Xiao-Jie Tang; ...

C. R. Méca (2020)


Numerical analysis of the compressive and shear failure behavior of rock containing multi-intermittent joints

Xiang Fan; Hang Lin; Hongpeng Lai; ...

C. R. Méca (2019)


A DEM analysis of step-path failure in jointed rock slopes

Luc Scholtès; Frédéric V. Donzé

C. R. Méca (2015)