Comptes Rendus
A layerwise C0-type higher order shear deformation theory for laminated composite and sandwich plates
Comptes Rendus. Mécanique, Volume 346 (2018) no. 1, pp. 57-76.

A novel layerwise C0-type higher order shear deformation theory (layerwise C0-type HSDT) for the analysis of laminated composite and sandwich plates is proposed. A C0-type HSDT is used in each lamina layer and the continuity of in-plane displacements and transverse shear stresses at inner-laminar layer is consolidated. The present layerwise theory retains only seven variables without increasing the number of variables when the number of lamina layers are intensified. The shear stresses through the plate thickness derived from the constitutive equation of the present theory have the same shape as those calculated from the equilibrium equation. In addition, the artificial constraints are added in the principle of virtual displacements (PVD) and are certainly fulfilled through a penalty approach. In this paper, two C0-continuity numerical methods, such as the Finite Element Method (FEM) and Bézier isogeometric element (BIEM) are utilized to solve a discrete system of equations derived from the PVD. Several numerical examples with various geometries, aspect ratios, stiffness ratios, and boundary conditions are investigated and compared with the 3D elasticity solution, the analytical, as well as, numerical solutions based on various plate theories.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2017.11.001
Mots clés : Plate, Laminated composite, Sandwich, Layerwise C0-type higher order shear deformation, Isogeometric analysis

Chien H. Thai 1, 2; Magd Abdel Wahab 3, 4; Hung Nguyen-Xuan 5, 6

1 Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
2 Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3 Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam
4 Soete Laboratory, Faculty of Engineering and Architecture, Ghent University, 9000, Ghent, Belgium
5 Center for Interdisciplinary Research, Ho Chi Minh City University (Hutech), Ho Chi Minh City, Vietnam
6 Department of Architectural Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
@article{CRMECA_2018__346_1_57_0,
     author = {Chien H. Thai and Magd Abdel Wahab and Hung Nguyen-Xuan},
     title = {A layerwise {C\protect\textsuperscript{0}-type} higher order shear deformation theory for laminated composite and sandwich plates},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {57--76},
     publisher = {Elsevier},
     volume = {346},
     number = {1},
     year = {2018},
     doi = {10.1016/j.crme.2017.11.001},
     language = {en},
}
TY  - JOUR
AU  - Chien H. Thai
AU  - Magd Abdel Wahab
AU  - Hung Nguyen-Xuan
TI  - A layerwise C0-type higher order shear deformation theory for laminated composite and sandwich plates
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 57
EP  - 76
VL  - 346
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2017.11.001
LA  - en
ID  - CRMECA_2018__346_1_57_0
ER  - 
%0 Journal Article
%A Chien H. Thai
%A Magd Abdel Wahab
%A Hung Nguyen-Xuan
%T A layerwise C0-type higher order shear deformation theory for laminated composite and sandwich plates
%J Comptes Rendus. Mécanique
%D 2018
%P 57-76
%V 346
%N 1
%I Elsevier
%R 10.1016/j.crme.2017.11.001
%G en
%F CRMECA_2018__346_1_57_0
Chien H. Thai; Magd Abdel Wahab; Hung Nguyen-Xuan. A layerwise C0-type higher order shear deformation theory for laminated composite and sandwich plates. Comptes Rendus. Mécanique, Volume 346 (2018) no. 1, pp. 57-76. doi : 10.1016/j.crme.2017.11.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.11.001/

[1] E. Reissner The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mech., Volume 12 (1945), pp. 69-77

[2] R.D. Mindlin Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mech., Volume 18 (1951), pp. 31-38

[3] P. Phung-Van; L.V. Tran; A.J.M. Ferreira; H. Nguyen-Xuan; M. Abdel-Wahab Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads, Nonlinear Dyn., Volume 87 (2017), pp. 879-894

[4] L.V. Tran; P. Phung-Van; J. Lee; M.A. Wahab; H. Nguyen-Xuan Isogeometric analysis for nonlinear thermomechanical stability of functionally graded plates, Compos. Struct., Volume 140 (2016), pp. 655-667

[5] L.V. Tran; J. Lee; H.A. Ly; M.A. Wahab; H. Nguyen-Xuan Vibration analysis of cracked FGM plates using higher-order shear deformation theory and extended isogeometric approach, Int. J. Mech. Sci., Volume 96–97 (2015), pp. 65-78

[6] C.-L. Thanh et al. Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory, Compos. Struct., Volume 184 (2018) no. Supplement C, pp. 633-649

[7] L.V. Tran; M.A. Wahab; S.-E. Kim An isogeometric finite element approach for thermal bending and buckling analyses of laminated composite plates, Compos. Struct., Volume 179 (2017) no. Supplement C, pp. 35-49

[8] P. Phung-Van et al. An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates, Composites, Part B, Eng., Volume 118 (2017), pp. 125-134

[9] P. Phung-Van et al. Size-dependent isogeometric analysis of functionally graded carbon nanotube-reinforced composite nanoplates, Compos. Struct., Volume 166 (2017), pp. 120-135

[10] X. Nguyen et al. A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory, Comput. Methods Appl. Mech. Eng., Volume 313 (2017), pp. 904-940

[11] A.J.M. Ferreira; L.M.S. Castro; S. Bertoluzza A high order collocation method for the static and vibration analysis of composite plates using a first-order theory, Compos. Struct., Volume 34 (2003), pp. 627-636

[12] J.N. Reddy A simple higher-order theory for laminated composite plates, J. Appl. Mech., Volume 51 (1984), pp. 745-752

[13] H. Nguyen-Xuan; C.H. Thai; T. Nguyen-Thoi Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory, Composites, Part B, Eng., Volume 55 (2013), pp. 558-574

[14] T.N. Nguyen; C.H. Thai; H. Nguyen-Xuan On the general framework of high order shear deformation theories for laminated composite plate structures: a novel unified approach, Int. J. Mech. Sci., Volume 110 (2016), pp. 242-255

[15] K.P. Soldatos A transverse shear deformation theory for homogenous monoclinic plates, Acta Mech., Volume 94 (1992), pp. 195-220

[16] M. Touratier An efficient standard plate theory, Int. J. Eng. Sci., Volume 29 (1991), pp. 745-752

[17] H. Arya; R.P. Shimpi; N.K. Naik A zigzag model for laminated composite beams, Compos. Struct., Volume 56 (2002), pp. 21-24

[18] Chien.H. Thai; A.J.M. Ferreira; T. Rabczuk; S.P.A. Bordas; H. Nguyen-Xuan Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory, Eur. J. Mech. A, Solids, Volume 43 (2014), pp. 89-108

[19] M. Karama; K.S. Afaq; S. Mistou Mechanical behavior of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity, Int. J. Solids Struct., Volume 40 (2003), pp. 1525-1546

[20] M. Aydogdu A new shear deformation theory for laminated composite plates, Compos. Struct., Volume 89 (2009), pp. 94-101

[21] S. Srinivas A refined analysis of composite laminates, J. Sound Vib., Volume 30 (1973), pp. 495-507

[22] H. Murakami Laminated composite plate theory with improved in-plane responses, J. Appl. Mech., Volume 53 (1986), pp. 661-666

[23] J.N. Reddy A generalization of two-dimensional theories of laminated composite plates, Commun. Appl. Numer. Methods, Volume 3 (1987), pp. 173-180

[24] J.N. Reddy; R.A. Arciniega Shear deformation plate and shell theories: from Stavsky to present, Mech. Adv. Mat. Struct., Volume 11 (2004), pp. 535-582

[25] J.N. Reddy An evaluation of equivalent-single-layer and layerwise theories of composite laminates, Compos. Struct., Volume 25 (1993), pp. 21-35

[26] E. Carrera An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates, Compos. Struct., Volume 50 (2000), pp. 183-198

[27] E. Carrera Theories and finite elements for multilayered, anisotropic, composite plates and shells, Arch. Comput. Methods Eng., Volume 9 (2002), pp. 87-140

[28] I. Kreja A literature review on computational models for laminated composite and sandwich panels, Centr. Eur. J. Eng., Volume 1 (2011), pp. 59-80

[29] H. Altenbach Theories for laminated and sandwich plates, Mech. Compos. Mater., Volume 34 (1998), pp. 243-252

[30] S.A. Ambartsumyan Theory of Anisotropic Plates (T. Cheron; J.E. Ashton, eds.), Technomic Publishing Co, 1969 (translated from Russian)

[31] J. Whitney The effect of transverse shear deformation in the bending of laminated plates, J. Compos. Mater., Volume 3 (1969), pp. 534-547

[32] C.Y. Lee; D. Liu; X. Lu Static and vibration analysis of laminated composite beams with an interlaminar shear stress continuity theory, Int. J. Numer. Methods Eng., Volume 33 (1992), pp. 409-424

[33] M.D. Sciuva; U. Icardi Numerical assessment of the core deformability effect on the behavior of sandwich beams, Compos. Struct., Volume 52 (2001), pp. 41-53

[34] S. Kapuria; P. Dumir; A. Ahmed An efficient higher order zig-zag theory for composite and sandwich beams subjected to thermal loading, Int. J. Solids Struct., Volume 40 (2003), pp. 6613-6631

[35] E. Carrera A study of transverse normal stress effect on vibration of multilayered plates and shell, J. Sound Vib., Volume 225 (1999), pp. 803-829

[36] E. Carrera Transverse normal stress effects in multilayered plate, J. Appl. Mech., Volume 66 (1999), pp. 1004-1012

[37] P. Vidal; O. Polit A family of sinus finite elements for the analysis of rectangular laminated beams, Compos. Struct., Volume 84 (2008), pp. 56-72

[38] P. Vidal; O. Polit A refined sine-based finite element with transverse normal deformation for the analysis of laminated beams under thermomechanical loads, J. Mech. Mater. Struct., Volume 4 (2009), pp. 1127-1155

[39] P. Vidal; O. Polit A sine finite element using a zig-zag function for the analysis of laminated composite beams, Composites, Part B, Eng., Volume 42 (2011), pp. 1671-1682

[40] P. Vidal; L. Gallimard; O. Polit Proper generalized decomposition and layer-wise approach for the modeling of composite plate structures, Int. J. Solids Struct., Volume 50 (2013), pp. 2239-2250

[41] A.J.M. Ferreira Analysis of composite plates using a layerwise theory and multiquadrics discretization, Mech. Adv. Mat. Struct., Volume 12 (2005), pp. 99-112

[42] A.J.M. Ferreira; G.E. Fasshauer; R.C. Batra; J.D. Rodrigues Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter, Compos. Struct., Volume 86 (2008), pp. 328-343

[43] C.H. Thai; A.J.M. Ferreira; E. Carrera; H. Nguyen-Xuan Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory, Compos. Struct., Volume 104 (2013), pp. 196-214

[44] H. Arya; R.P. Shimpi; N.K. Naik A zigzag model for laminated composite beams, Compos. Struct., Volume 56 (2002), pp. 21-24

[45] C.M.C. Roque; A.J.M. Ferreira; R.M.N. Jorge Modelling of composite and sandwich plates by a trigonometric layerwise deformation theory and radial basis functions, Composites, Part B, Eng., Volume 36 (2005), pp. 559-572

[46] C.H. Thai; A.J.M. Ferreira; M.A. Wahab; H. Nguyen-Xuan A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis, Acta Mech., Volume 227 (2016), pp. 1225-1250

[47] J.N. Reddy Mechanics of Laminated Composite Plates, CRC Press, New York, 1997

[48] L.B. Nguyen; C.H. Thai; H. Nguyen-Xuan A generalized unconstrained theory and isogeometric finite element analysis based on Bézier extraction for laminated composite plates, Eng. Comput., Volume 32 (2015), pp. 457-475

[49] K.M. Liew; Y.Q. Huang; J.N. Reddy Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method, Comput. Methods Appl. Mech. Eng., Volume 192 (2003), pp. 2203-2222

[50] X.L. Chen; G.R. Liu; S.P. Lim An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape, Compos. Struct., Volume 59 (2003), pp. 279-289

[51] A.K. Noor; J.M. Peters; W.S. Burton Three-dimensional solutions for initially stressed structural sandwiches, J. Eng. Mech., Volume 120 (1994), pp. 284-303

[52] N.J. Pagano Exact solutions for rectangular bidirectional composites and sandwich plates, J. Compos. Mater., Volume 4 (1970), pp. 20-34

[53] G. Akhras; M.S. Cheung; W. Li Finite strip analysis for anisotropic laminated composite plates using higher-order deformation theory, Comput. Struct., Volume 52 (1994), pp. 471-477

[54] A.J.M. Ferreira; C.M.C. Roque; P.A.L.S. Martins Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method, Composites, Part B, Volume 34 (2003), pp. 627-636

[55] C.M.C. Roque; A.J.M. Ferreira; R.M.N. Jorge Modelling of composite and sandwich plates by a trigonometric layerwise deformation theory and radial basis functions, Composites, Part B, Eng., Volume 36 (2005), pp. 559-572

[56] X. Wang; G. Shi A refined laminated plate theory accounting for the third-order shear deformation and interlaminar transverse stress continuity, Appl. Math. Model., Volume 39 (2015), pp. 5659-5680

[57] S. Srinivas A refined analysis of composite laminates, J. Sound Vib., Volume 30 (1973), pp. 495-507

[58] B.N. Pandya; T. Kant Higher-order shear deformable theories for flexure of sandwich plates-finite element evaluations, Int. J. Solids Struct., Volume 24 (1988), pp. 419-451

[59] J.L. Mantari; A.S. Oktem; C.G. Soares A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates, Int. J. Solids Struct., Volume 49 (2012)

[60] N. Grover; D.K. Maiti; B.N. Singh A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates, Compos. Struct., Volume 95 (2013)

[61] A.K. Noor; Mathers Shear-Flexible Finite Element Method of Laminated Composite Plate, 1975 (Technical report, NASA)

[62] L. Liu; L.P. Chua; D.N. Ghista Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates, Compos. Struct., Volume 78 (2007), pp. 58-69

[63] N.D. Phan; J.N. Reddy Analysis of laminated composite plates using a higher-order shear deformation theory, Int. J. Numer. Methods Eng., Volume 21 (1985), pp. 2201-2219

[64] A.A. Khdeir; L. Librescu Analysis of symmetric cross-ply elastic plates using a higher order theory: Part II: buckling and free vibration, Compos. Struct., Volume 9 (1988), pp. 259-277

[65] A. Chakrabarti; A.H. Sheikh Buckling of laminated composite plates by a new element based on higher order shear deformation theory, Mech. Compos. Mater. Struct., Volume 10 (2003), pp. 303-317

[66] J.N. Reddy; N.D. Phan Stability and vibration of isotropic, orthotropic and laminated plates according to a higher order shear deformation theory, J. Sound Vib., Volume 89 (1985), pp. 157-170

[67] M.E. Fares; A.M. Zenkour Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories, Compos. Struct., Volume 44 (1999), pp. 279-287

[68] B. Sarah; T. Kant Two shear deformable finite element models for buckling analysis of skew fiber-reinforced composite and sandwich panels, Compos. Struct., Volume 46 (1999), pp. 115-124

[69] M. Cetkovic; D. Vuksanovic Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model, Compos. Struct., Volume 88 (2009), pp. 219-227

[70] A. Kdheir Analysis of symmetric cross-ply elastic plates using a higher-order theory, Part II: buckling and free vibration, Compos. Struct., Volume 9 (1988), pp. 259-277

[71] A.J.M. Ferreira; L.M.S. Castro; S. Bertoluzza A high order collocation method for the static and vibration analysis of composite plates using a first-order theory, Compos. Struct., Volume 89 (2009), pp. 424-432

[72] A.J.M. Ferreira A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates, Compos. Struct., Volume 59 (2003), pp. 385-392

[73] W. Zhen; C. Wanji Free vibration of laminated composite and sandwich plates using global–local higher-order theory, J. Sound Vib., Volume 298 (2006), pp. 333-349

[74] C.P. Wu; W.Y. Chen Vibration and stability of laminated plates based on a local higher-order plate theory, J. Sound Vib., Volume 177 (1994), pp. 503-520

[75] H. Matsunaga Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory, Compos. Struct., Volume 48 (2000), pp. 231-244

[76] K.N. Cho; C.W. Bert; A.G. Striz Free vibration of laminated rectangular plates analyzed by higher-order individual-layer theory, J. Sound Vib., Volume 145 (1991), pp. 429-442

[77] S. Shojaee; N. Valizadeh; E. Izadpanah; T. Bui; T.V. Vu Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method, Compos. Struct., Volume 94 (2012), pp. 1677-1693

Cited by Sources:

Comments - Politique