Comptes Rendus
Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face
Comptes Rendus. Mécanique, Volume 346 (2018) no. 5, pp. 366-383.

This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.03.003
Mots clés : Boussinesq-type model, Nonlinear water waves, Porous medium, Seepage face, Rectangular dam

Carmine Di Nucci 1

1 Civil, Construction-Architectural and Environmental Engineering Department – University of L'Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L'Aquila, Italy
@article{CRMECA_2018__346_5_366_0,
     author = {Carmine Di Nucci},
     title = {Unsteady free surface flow in porous media: {One-dimensional} model equations including vertical effects and seepage face},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {366--383},
     publisher = {Elsevier},
     volume = {346},
     number = {5},
     year = {2018},
     doi = {10.1016/j.crme.2018.03.003},
     language = {en},
}
TY  - JOUR
AU  - Carmine Di Nucci
TI  - Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 366
EP  - 383
VL  - 346
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2018.03.003
LA  - en
ID  - CRMECA_2018__346_5_366_0
ER  - 
%0 Journal Article
%A Carmine Di Nucci
%T Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face
%J Comptes Rendus. Mécanique
%D 2018
%P 366-383
%V 346
%N 5
%I Elsevier
%R 10.1016/j.crme.2018.03.003
%G en
%F CRMECA_2018__346_5_366_0
Carmine Di Nucci. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face. Comptes Rendus. Mécanique, Volume 346 (2018) no. 5, pp. 366-383. doi : 10.1016/j.crme.2018.03.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.03.003/

[1] J. Boussinesq Recherches théoriques sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le debit des sources, J. Math. Pures Appl., Volume 10 (1904), pp. 5-78

[2] J. Bear The Dynamics of Fluids in Porous Media, Dover, New York, 1988

[3] P.K. Mishra; K.L. Kuhlman Unconfined Aquifer Flow Theory: From Dupuit to Present, Springer, New York, 2013

[4] P.A. Troch; C. Paniconi; E.E. van Loon Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response, Water Resour. Res., Volume 39 (2003), p. 1316

[5] G. Dagan Second order theory of shallow free surface flow in porous media, Q. J. Mech. Appl. Math., Volume 20 (1967), pp. 517-526

[6] J.-Y. Parlange; F. Stagnitti; J.L. Starr; R.D. Braddock Free-surface flow in porous media and periodic solution of the shallow-flow approximation, J. Hydrol., Volume 70 (1984), pp. 251-263

[7] P.L.-F. Liu; J. Wen Nonlinear diffusive surface waves in porous media, J. Fluid Mech., Volume 347 (1997), pp. 119-139

[8] P. Nielsen; R. Aseervatham; J.D. Fenton; P. Perrochet Groundwater waves in aquifers of intermediate depths, Adv. Water Resour., Volume 20 (1997), pp. 37-43

[9] H.T. Teo; D.S. Jeng; B.R. Seymour; D.A. Barry; L. Li A new analytical solution for water table fluctuations in coastal aquifers with sloping beaches, Adv. Water Resour., Volume 26 (2003), pp. 1239-1247

[10] D.-S. Jeng; B.R. Seymour; D.A. Barry; J.-Y. Parlange; D.A. Lockington; L. Li Steepness expansion for free surface flows in coastal aquifers, J. Hydrol., Volume 309 (2005), pp. 85-92

[11] S. Hsiao; K. Hu; H. Hwung Extended Boussinesq equations for water-wave propagation in porous media, J. Eng. Mech., Volume 136 (2010), pp. 625-640

[12] C. Lee; V.N. Vu; T.H. Jung Extended Boussinesq equations for waves in porous media: derivation of governing equations and generation of waves internally, Seoul, Korea (2014)

[13] J.-Y. Parlange; W. Brutsaert A capillarity correction for free surface flow of groundwater, Water Resour. Res., Volume 23 (1987), pp. 805-808

[14] L. Li; D.A. Barry; F. Stagnitti; J.-Y. Parlange Groundwater waves in a coastal aquifer: a new governing equation including vertical effects and capillarity, Water Resour. Res., Volume 36 (2000), pp. 411-420

[15] J. Kong; Z. Luo; C. Shen; G. Hua; H. Zhao An alternative Boussinesq equation considering the effect of hysteresis on coastal groundwater waves, Hydrol. Process., Volume 30 (2016), pp. 2657-2670

[16] A.J. Baird; T.E. Mason; D.P. Horn Validation of a Boussinesq model of beach ground water behaviour, Mar. Geol., Volume 148 (1998), pp. 55-69

[17] B. Raubenheimer; R.T. Guza; S. Elgar Tidal water table fluctuations in a sandy ocean beach, Water Resour. Res., Volume 35 (1999), pp. 2313-2320

[18] C. Di Nucci; A. Russo Spena Curved-streamline transitional flow from mild to steep slopes, J. Hydraulic Res., Volume 48 (2010), pp. 699-700

[19] C. Di Nucci; A. Russo Spena Energy and momentum under critical flow condition, J. Hydraulic Res., Volume 49 (2011), pp. 127-128

[20] C. Di Nucci; M. Petrilli; A. Russo Spena Unsteady friction and visco-elasticity in pipe fluid transients, J. Hydraulic Res., Volume 49 (2011), pp. 398-401

[21] C. Di Nucci; A. Russo Spena Weakly undular hydraulic jump: effects of friction, J. Hydraulic Res., Volume 49 (2011), pp. 409-412

[22] C. Di Nucci; A. Russo Spena Moment of momentum equation for curvilinear free-surface flow, J. Hydraulic Res., Volume 49 (2011), pp. 415-419

[23] C. Di Nucci; A. Russo Spena Universal probability distributions of turbulence in open channel flows, J. Hydraulic Res., Volume 49 (2011), p. 702

[24] C. Di Nucci; A. Russo Spena On the propagation of one-dimensional acoustic waves in liquids, Meccanica, Volume 48 (2013), pp. 15-21

[25] C. Di Nucci; A. Russo Spena On transient liquid flow, Meccanica, Volume 51 (2016), pp. 2135-2143

[26] P. Polubarinova-Kochina Theory of Ground Water Movement, Princeton University Press, Princeton, 1962

[27] U. Hornung; T. Krueger Evaluation of the Polubarinova-Kochina formula for the dam problem, Water Resour. Res., Volume 21 (1985), pp. 395-398

[28] E. Bresciani; P. Davy; J.-R. de Dreuzy Is the Dupuit assumption suitable for predicting the groundwater seepage area in hillslopes?, Water Resources Research, Volume 50 (2014), pp. 2394-2406

[29] C. Di Nucci A free boundary problem: steady axisymmetric potential flow, Meccanica, Volume 48 (2013), pp. 1805-1810

[30] C. Di Nucci Erratum: a free boundary problem: steady axisymmetric potential flow, Meccanica, Volume 49 (2014), p. 253

[31] C. Di Nucci Steady free-surface flow in porous media: generalized Dupuit–Fawer equations, J. Hydraul. Res., Volume 49 (2011), pp. 821-823

[32] D. Chenaf; R.P. Chapuis Seepage face height, water table position, and well efficiency at steady state, Ground Water, Volume 45 (2007), pp. 168-177

[33] K.R. Rushton; E.G. Youngs Drainage of recharge to symmetrically located downstream boundaries with special reference to seepage faces, J. Hydrol., Volume 380 (2010), pp. 94-103

[34] M. Todsen On the solution of transient free-surface flow problems in porous media by finite-difference methods, J. Hydrol., Volume 12 (1971), pp. 177-210

[35] R.T.-S. Cheng; C.-Y. Li On the solution of transient free-surface flow problems in porous media by the finite element method, J. Hydrol., Volume 20 (1973), pp. 49-63

[36] S.T. Potter; W.J. Gburek Seepage face simulation using PLASM, Ground Water, Volume 25 (1987), pp. 722-732

[37] M.G. McDonald; A.W. Harbaugh A Modular Three-Dimensional Finite-Difference Ground–Water Flow Model: U.S. Geological Survey Techniques of Water-Resources Investigations, 1988 (book 6, Chap. A1)

[38] O. Batelaan; F. De Smedt SEEPAGE, a new MODFLOW DRAIN package, Ground Water, Volume 42 (2004), pp. 576-588

[39] A. Chakib; A. Nachaoui Nonlinear programming approach for transient free boundary flow problem, Appl. Math. Comput., Volume 160 (2005), pp. 317-328

[40] B. Ataie-Ashtiani; R.E. Volker; D.A. Lockington Tidal effects on groundwater dynamics in unconfined aquifers, Hydrol. Process., Volume 15 (2001), pp. 655-669

[41] F.U. Jun-feng; J.I.N. Sheng A study on unsteady seepage flow through DAM, J. Hydrodyn., Volume 21 (2009), pp. 499-504

[42] L. Yuanyi; Y. Dekui; L. Binliang; F.-Y. Teo A fully coupled depth-integrated model for surface water and groundwater flows, J. Hydrol., Volume 542 (2016), pp. 172-184

[43] C. Di Nucci Theoretical derivation of the conservation equations for single phase flow in porous media: a continuum approach, Meccanica, Volume 49 (2014), pp. 2829-2838

[44] W. Zijl; M. Nawalany Natural Groundwater Flow, Lewis Publishers, Boca Raton, 1993

[45] J. Bear; A.H.D. Cheng Comment on: “Methods to derive the differential equation of the free surface boundary” by C. Chen, X. Kuang, J.J. Jiao, Ground Water, Volume 48 (2010), pp. 486-489

[46] C. Baiocchi; V. Comincioli; E. Magenes; G.A. Pozzi Free boundary problems in the theory of fluid flow through porous media, Ann. Mat. Pura Appl., Volume 97 (1973), pp. 1-82

[47] G.B. Whitham Linear and Nonlinear Waves, Wiley, New York, 1974

[48] J.H. Knight Steady periodic flow through a rectangular DAM, Water Resour. Res., Volume 12 (1981), pp. 1222-1224

[49] S. Saks; A. Zygmund Analytic Functions, Elsevier, Amsterdam–London–New York, 1971 https://eudml.org/doc/219298

[50] S.D. Fisher Complex Variables, Dover, New York, 1999

[51] T.B. Benjamin; M.J. Lighthill On cnoidal waves and bores, Proc. R. Soc. London A, Volume 224 (1954), pp. 448-460

[52] E.M. de Jager On the origin of the Korteweg–de Vries equation | arXiv

[53] E. Marchi; A. Rubatta Meccanica dei Fluidi – Principi e Applicazioni Idrauliche, UTET, Torino, 1996

[54] E. Marchi On the free overfall, J. Hydraul. Res., Volume 31 (1993), pp. 777-790

[55] C. Di Nucci; A. Russo Spena; M.T. Todisco On the non-linear unsteady water flow in open channels, Il Nuovo Cimento B, Volume 122 (2007), pp. 237-255

[56] D. Dutykh; F. Dias Dissipative Boussinesq equations, C. R. Mecanique, Volume 335 (2007), pp. 559-583

[57] COMSOL Multiphysics 5.2a, COMSOL Inc., 2016

[58] C. Caruso; P. Lonetti; A. Manna Dynamic crack propagation in fiber reinforced composites, Proc. COMSOL Conference 2009 Milan, 2009

[59] I.A. Charni A rigorous derivation of Dupuit's formula for unconfined seepage with seepage surface, Dokl. Akad. Nauk S.S.S.R., Volume 79 (1951), pp. 937-940 (in Russian)

Cited by Sources:

Comments - Politique