Model reduction techniques such as Proper Generalized Decomposition (PGD) are decision-making tools that are about to revolutionize many domains. Unfortunately, their computation is still problematic for problems involving many parameters, for which one has to face the “curse of dimensionality”. An answer to this challenge is given in solid mechanics by the so-called “parameter-multiscale PGD”, which is based on Saint-Venant's principle. In this article, a model problem composed of up to a thousand parameters is presented, showing that the method is able to overcome the “curse of dimensionality”.
Les modèles réduits, en particulier ceux basés sur la Proper Generalized Decomposition (PGD) sont des outils de conception qui s'apprêtent à révolutionner la simulation numérique. Malheureusement, pour les problèmes à grand nombre de paramètres, la « malédiction de la dimensionnalité » semble être une limitation majeure. Nous proposons, avec la parameter-multiscale PGD, une solution à ce problème basée sur le principe de Saint-Venant. Un cas test comprenant jusqu'à mille paramètres est présenté dans cet article et prouve que la méthode permet bien de s'affranchir de la « malédiction de la dimensionnalité ».
Accepted:
Published online:
Mots-clés : Réduction de modèles, PGD, Multiparamétrique
Charles Paillet 1; David Néron 1; Pierre Ladevèze 1
@article{CRMECA_2018__346_7_524_0, author = {Charles Paillet and David N\'eron and Pierre Ladev\`eze}, title = {A door to model reduction in high-dimensional parameter space}, journal = {Comptes Rendus. M\'ecanique}, pages = {524--531}, publisher = {Elsevier}, volume = {346}, number = {7}, year = {2018}, doi = {10.1016/j.crme.2018.04.009}, language = {en}, }
Charles Paillet; David Néron; Pierre Ladevèze. A door to model reduction in high-dimensional parameter space. Comptes Rendus. Mécanique, Model reduction, data-based and advanced discretization in computational mechanics / Réduction de modèles, données et techniques de discrétisation avancées en mécanique numérique, Volume 346 (2018) no. 7, pp. 524-531. doi : 10.1016/j.crme.2018.04.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.04.009/
[1] Separated Representations and PGD-Based Model Reduction: Fundamentals and Applications, vol. CISM 554 (F. Chinesta; P. Ladevèze, eds.), Springer, 2014
[2] On algorithm family in structural mechanics, C. R. Acad. Sci. Paris, Ser. IIb, Volume 300 (1985) no. 2, pp. 41-44
[3] The large time increment method for the analyse of structures with nonlinear constitutive relation described by internal variables, C. R. Acad. Sci. Paris, Ser. IIb, Volume 309 (1989) no. 2, pp. 1095-1099 (in French)
[4] On reduced models in nonlinear solid mechanics, Eur. J. Mech. A, Solids, Volume 60 (2016), pp. 227-237
[5] Nonlinear Computational Structural Mechanics: New Approaches and Non-incremental Methods of Calculation, Springer-Verlag, New York, 1999
[6] New Methods with Conditioner for PGD Reduced Order Models, LMT Cachan, France, 2014 Technical report (in French)
[7]
(2015), pp. 1-50 (work document)[8] Tensor Spaces and Numerical Tensor Calculus, Springer, 2012 (series in ed)
[9] A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems, ESAIM: Math. Model. Numer. Anal., Volume 48 (2014) no. 6, pp. 1777-1806
[10] On manifolds of tensors of fixed TT-rank, Numer. Math., Volume 120 (2012) no. 4, pp. 701-731
[11] Tensor-train decomposition, SIAM J. Sci. Comput., Volume 33 (2011) no. 5, pp. 2295-2317
[12] A New Method for the ROM Computation: The Parameter-Multiscale PGD, LMT Cachan, 2016 Technical report (in French)
[13] Extended-PGD model reduction for nonlinear solid mechanics problems involving many parameters, Comput. Methods Appl. Sci., Volume 46 (2018), pp. 201-220
[14] The LATIN multiscale computational method and the proper generalized decomposition, Comput. Methods Appl. Mech. Eng., Volume 199 (2010), pp. 1287-1296
[15] New Variational Formulations for Discontinuous Approximations, LMT Cachan, 2011 Technical report (in French)
[16] On Trefftz and weak Trefftz discontinuous Galerkin approaches for medium-frequency acoustics, Comput. Methods Appl. Mech. Eng., Volume 278 (2014), pp. 729-743
[17] A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Part II: Transient simulation using space-time separated representations, J. Non-Newton. Fluid Mech., Volume 144 (2007) no. 2–3, pp. 98-121
Cited by Sources:
Comments - Policy