Comptes Rendus
Model reduction, data-based and advanced discretization in computational mechanics
Model order reduction for dynamical systems: A geometric approach
Comptes Rendus. Mécanique, Volume 346 (2018) no. 7, pp. 515-523.

The aim of this paper is to ask the question as whether it is possible, for a given dynamical system defined by a vector field over a finite dimensional inner product space, to construct a reduced-order model over a finite dimensional manifold. In order to give a positive answer to this question, we prove that if the manifold under consideration is an immersed submanifold of the vector space, considered as ambient manifold, then it is possible to construct explicitly a reduced-order vector field over this submanifold. In particular, we found that the reduced-order vector field satisfies the variational principle of Dirac–Frenkel and that we can formulate the Proper Orthogonal Decomposition under this framework. Finally, we propose a local-point estimator of the time-dependent error between the original vector field and the reduced-order one.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.04.010
Keywords: Proper generalized decomposition, Frequency-dependent parametric models, Harmonic analysis, Modal analysis, Dynamics

Antonio Falcó 1; Fernando Sánchez 1

1 ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, San Bartolomé 55, 46115 Alfara del Patriarca (Valencia), Spain
@article{CRMECA_2018__346_7_515_0,
     author = {Antonio Falc\'o and Fernando S\'anchez},
     title = {Model order reduction for dynamical systems: {A} geometric approach},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {515--523},
     publisher = {Elsevier},
     volume = {346},
     number = {7},
     year = {2018},
     doi = {10.1016/j.crme.2018.04.010},
     language = {en},
}
TY  - JOUR
AU  - Antonio Falcó
AU  - Fernando Sánchez
TI  - Model order reduction for dynamical systems: A geometric approach
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 515
EP  - 523
VL  - 346
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2018.04.010
LA  - en
ID  - CRMECA_2018__346_7_515_0
ER  - 
%0 Journal Article
%A Antonio Falcó
%A Fernando Sánchez
%T Model order reduction for dynamical systems: A geometric approach
%J Comptes Rendus. Mécanique
%D 2018
%P 515-523
%V 346
%N 7
%I Elsevier
%R 10.1016/j.crme.2018.04.010
%G en
%F CRMECA_2018__346_7_515_0
Antonio Falcó; Fernando Sánchez. Model order reduction for dynamical systems: A geometric approach. Comptes Rendus. Mécanique, Volume 346 (2018) no. 7, pp. 515-523. doi : 10.1016/j.crme.2018.04.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.04.010/

[1] C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, European Mathematical Society, 2008

[2] S. Volkwein Model Reduction Using Proper Orthogonal Decomposition, Lecture Notes, Institute of Mathematics and Scientific Computing, University of Graz, Austria, 2011

[3] P. Benner; S. Gugercin; K. Willcox A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., Volume 57 (2015) no. 4, pp. 483-531

[4] F. Chinesta; A. Huerta; G. Rozza; K. Willcox Model order reduction, Encyclopedia of Computational Mechanics, Wiley, 2016

[5] A. Falcó; W. Hackbusch; A. Nouy On the Dirac–Frenkel variational principle on tensor Banach spaces, Found. Comput. Math. (2018) (in press) | DOI

[6] E. Hairer; C. Lubich; G. Wanner Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, 2006

[7] O. Koch; C. Lubich Dynamical low-rank approximation, SIAM J. Matrix Anal. Appl., Volume 29 (2007) no. 2, pp. 434-454

[8] O. Koch; C. Lubich Dynamical tensor approximation, SIAM J. Matrix Anal. Appl., Volume 31 (2010) no. 5, pp. 2360-2375

[9] S. Lang Differential and Riemannian Manifolds, Graduate Texts in Mathematics, vol. 160, Springer-Verlag, 1995

[10] J.E. Marsden; T. Ratiu; R. Abraham Manifolds, Tensor Analysis, and Applications, Springer-Verlag, 1988

[11] M. Planitz Inconsistent systems of linear equations, Math. Gaz., Volume 63 (1979) no. 425, pp. 181-185

[12] A. Ben-Israel; T.N.E. Greville Generalized Inverses: Theory and Applications, CMS Books in Mathematics, vol. 15, Springer-Verlag, 2003

[13] V. Rakocevic On continuity of the Moore–Penrose and Drazin inverses, Mat. Vesn., Volume 49 (1997), pp. 163-172

Cited by Sources:

Comments - Policy