Comptes Rendus
Computational modeling of material forming processes / Simulation numérique des procédés de mise en forme
A generalized anisotropic and asymmetric yield criterion with adjustable complexity
Comptes Rendus. Mécanique, Volume 346 (2018) no. 8, pp. 779-793.

During the past decades, numerous yield criteria for orthotropic materials, possibly showing tension–compression asymmetry, were developed. Although they were applied successfully to forming simulations, they are usually only adequate for a specific class of materials. The aim of this work is to present a generalized, pressure-independent criterion for plane stress states on the base of a two-dimensional Fourier series. Its complexity is adjustable through the number of considered Fourier coefficients, and thus, albeit using an associated flow rule, virtually any number of experimental data can be captured exactly. The criterion is applicable for materials with or without tension–compression asymmetry.

Au cours des dernières décennies, de nombreux modèles de critères d'écoulement plastique ont été présentés pour décrire le comportement des matériaux orthotropes présentant éventuellement une asymétrie entre la traction et la compression. Malheureusement, ils sont, soit exclusivement applicables à une seule classe de matériaux, soit d'une grande complexité. Le but de ce travail est de développer, pour des états de contraintes planes, un modèle universel et indépendant de la pression. Le critère d'écoulement plastique proposé est basé sur une série de Fourier bidimensionnelle. La complexité du modèle étant ajustable au nombre de coefficients de Fourier considérés, la quantité de données expérimentales prise en compte est donc illimitée, et ceci même en utilisant une loi d'écoulement associée. Cette fonction permet donc de modéliser un grand nombre de matériaux différents, avec ou sans asymétrie entre la traction et la compression.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.05.002
Keywords: Anisotropy, Strength differential, Sheet metal forming, Differential geometry
Mot clés : Anisotropie, Asymétrie traction–compression, Formage de tôle, Géométrie différentielle

Christian Raemy 1; Niko Manopulo 1; Pavel Hora 1

1 Institute of Virtual Manufacturing, Tannenstrasse 3, ETH Zurich, 8092 Zurich, Switzerland
@article{CRMECA_2018__346_8_779_0,
     author = {Christian Raemy and Niko Manopulo and Pavel Hora},
     title = {A generalized anisotropic and asymmetric yield criterion with adjustable complexity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {779--793},
     publisher = {Elsevier},
     volume = {346},
     number = {8},
     year = {2018},
     doi = {10.1016/j.crme.2018.05.002},
     language = {en},
}
TY  - JOUR
AU  - Christian Raemy
AU  - Niko Manopulo
AU  - Pavel Hora
TI  - A generalized anisotropic and asymmetric yield criterion with adjustable complexity
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 779
EP  - 793
VL  - 346
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2018.05.002
LA  - en
ID  - CRMECA_2018__346_8_779_0
ER  - 
%0 Journal Article
%A Christian Raemy
%A Niko Manopulo
%A Pavel Hora
%T A generalized anisotropic and asymmetric yield criterion with adjustable complexity
%J Comptes Rendus. Mécanique
%D 2018
%P 779-793
%V 346
%N 8
%I Elsevier
%R 10.1016/j.crme.2018.05.002
%G en
%F CRMECA_2018__346_8_779_0
Christian Raemy; Niko Manopulo; Pavel Hora. A generalized anisotropic and asymmetric yield criterion with adjustable complexity. Comptes Rendus. Mécanique, Volume 346 (2018) no. 8, pp. 779-793. doi : 10.1016/j.crme.2018.05.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.05.002/

[1] R. Hill A theory of the yielding and plastic flow of anisotropic metals, Proc. R. Soc. Lond. Ser. A, Volume 193 (1948), pp. 281-297

[2] W.F. Hosford A generalized isotropic yield criterion, J. Appl. Mech., Volume 39 (1972) no. 2, pp. 607-609

[3] R. Hill Theoretical plasticity of textured aggregates, Math. Proc. Camb. Philos. Soc., Volume 85 (1979) no. 01, pp. 179-191

[4] R.W. Logan; W.F. Hosford Upper-bound anisotropic yield locus calculations assuming 〈111〉-pencil glide, Int. J. Mech. Sci., Volume 22 (1980) no. 7, pp. 419-430

[5] F. Barlat; O. Richmond Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured f.c.c. polycrystalline sheets, Mater. Sci. Eng., Volume 95 (1987), pp. 15-29

[6] W.F. Hosford Comments on anisotropic yield criteria, Int. J. Mech. Sci., Volume 27 (1985) no. 7, pp. 423-427

[7] F. Barlat; K. Lian Plastic behavior and stretchability of sheet metals, part I: a yield function for orthotropic sheets under plane stress conditions, Int. J. Plast., Volume 5 (1989) no. 1, pp. 51-66

[8] F. Barlat; D.J. Lege; J.C. Brem A six-component yield function for anisotropic materials, Int. J. Plast., Volume 7 (1991) no. 7, pp. 693-712

[9] F. Barlat; J.C. Brem; J.W. Yoon; K. Chung; R.E. Dick; D.J. Lege; F. Pourboghrat; S.H. Choi; E. Chu Plane stress yield function for aluminum alloy sheets, part 1: theory, Int. J. Plast., Volume 19 (2003) no. 9, pp. 1297-1319

[10] F. Bron; J. Besson A yield function for anisotropic materials application to aluminum alloys, Int. J. Plast., Volume 20 (2004) no. 4–5, pp. 937-963

[11] D. Banabic; H. Aretz; D.S. Comsa; L. Paraianu An improved analytical description of orthotropy in metallic sheets, Int. J. Plast., Volume 21 (2005) no. 3, pp. 493-512

[12] F. Barlat; H. Aretz; J.W. Yoon; M.E. Karabin; J.C. Brem; R.E. Dick Linear transformation-based anisotropic yield functions, Int. J. Plast., Volume 21 (2005) no. 5, pp. 1009-1039

[13] G. Ferron; R. Makkouk; J. Morreale A parametric description of orthotropic plasticity in metal sheets, Int. J. Plast., Volume 10 (1994) no. 5, pp. 431-449

[14] H. Vegter; A.H. van den Boogaard A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states, Int. J. Plast., Volume 22 (2006) no. 3, pp. 557-580

[15] J.W. Yoon; F. Barlat; K. Chung; F. Pourboghrat; D.Y. Yang Earing predictions based on asymmetric nonquadratic yield function, Int. J. Plast., Volume 16 (2000) no. 9, pp. 1075-1104

[16] O. Cazacu; F. Barlat A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, Int. J. Plast., Volume 20 (2004) no. 11, pp. 2027-2045

[17] O. Cazacu; B. Plunkett; F. Barlat Orthotropic yield criterion for hexagonal closed packed metals, Int. J. Plast., Volume 22 (2006) no. 7, pp. 1171-1194

[18] B. Plunkett; O. Cazacu; F. Barlat Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals, Int. J. Plast., Volume 24 (2008) no. 5, pp. 847-866

[19] A.S. Khan; S. Yu; H. Liu Deformation induced anisotropic responses of Ti–6AL–4V alloy, part II: a strain rate and temperature dependent anisotropic yield criterion, Int. J. Plast., Volume 38 ( Nov. 2012 ), pp. 14-26

[20] N. Manopulo; C. Raemy; P. Hora On the modelling of strength differential and anisotropy exhibited by titanium, J. Phys. Conf. Ser., Volume 734 (2016)

[21] T.B. Stoughton A non-associated flow rule for sheet metal forming, Int. J. Plast., Volume 18 (2002) no. 5–6, pp. 687-714

[22] T.B. Stoughton; J.-W. Yoon A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming, Int. J. Plast., Volume 20 (2004) no. 4–5, pp. 705-731

[23] Y. Bai; T. Wierzbicki A new model of metal plasticity and fracture with pressure and Lode dependence, Int. J. Plast., Volume 24 (2008) no. 6, pp. 1071-1096

[24] J.W. Yoon; Y. Lou; J. Yoon; M.V. Glazoff Asymmetric yield function based on the stress invariants for pressure sensitive metals, Int. J. Plast., Volume 56 (2014), pp. 184-202

[25] C. Raemy; N. Manopulo; P. Hora On the modelling of plastic anisotropy, asymmetry and directional hardening of commercially pure titanium: a planar Fourier series based approach, Int. J. Plast., Volume 91 (2017), pp. 182-204

[26] A. Jeffrey Advanced Engineering Mathematics, Academic Press, San Diego, CA, USA, 2001

[27] A. Gray Differentialgeometrie: klassische Theorie in moderner Darstellung, Spektrum Lehrbuch, Spektrum Akademischer Verlag, Heidelberg, Germany, 1994

[28] J.C. Simo; T.J.R. Hughes Computational Inelasticity, Springer, 1998

[29] C. Raemy; N. Manopulo; P. Hora (J. Phys. Conf. Ser.), Volume vol. 896 (2017), p. 012016

[30] T. Park; K. Chung Non-associated flow rule with symmetric stiffness modulus for isotropic–kinematic hardening and its application for earing in circular cup drawing, Int. J. Solids Struct., Volume 49 (2012) no. 25, pp. 3582-3593

[31] J.W. Yoon; I.S. Song; D.Y. Yang; K. Chung; F. Barlat Finite element method for sheet forming based on an anisotropic strain-rate potential and the convected coordinate system, Int. J. Mech. Sci., Volume 37 (1995) no. 7, pp. 733-752

Cited by Sources:

Comments - Policy