We study the behavior of a magnetohydrodynamic (MHD) stationary boundary layer in a framework modified according to O.A. Ladyzhenskaya. We estimate the shift of a separation point under the influence of a magnetic field.
Nous étudions le comportement d'une couche limite stationnaire magnétohydrodynamique (MHD) dans le cadre modifié par O.A. Ladyzhenskaya. Nous estimons le déplacement du point de séparation sous l'influence d'un champ magnétique.
Accepted:
Published online:
Mot clés : Magnétohydrodynamique, Couche limite d'un fluide, Point de séparation, O.A. Ladyzhenskaya fluide
Regina R. Bulatova 1; Gregory A. Chechkin 1; Tatiana P. Chechkina 2; Vyacheslav N. Samokhin 3
@article{CRMECA_2018__346_9_807_0, author = {Regina R. Bulatova and Gregory A. Chechkin and Tatiana P. Chechkina and Vyacheslav N. Samokhin}, title = {On the influence of a magnetic field on the separation of the boundary layer of a {non-Newtonian} {MHD} medium}, journal = {Comptes Rendus. M\'ecanique}, pages = {807--814}, publisher = {Elsevier}, volume = {346}, number = {9}, year = {2018}, doi = {10.1016/j.crme.2018.06.010}, language = {en}, }
TY - JOUR AU - Regina R. Bulatova AU - Gregory A. Chechkin AU - Tatiana P. Chechkina AU - Vyacheslav N. Samokhin TI - On the influence of a magnetic field on the separation of the boundary layer of a non-Newtonian MHD medium JO - Comptes Rendus. Mécanique PY - 2018 SP - 807 EP - 814 VL - 346 IS - 9 PB - Elsevier DO - 10.1016/j.crme.2018.06.010 LA - en ID - CRMECA_2018__346_9_807_0 ER -
%0 Journal Article %A Regina R. Bulatova %A Gregory A. Chechkin %A Tatiana P. Chechkina %A Vyacheslav N. Samokhin %T On the influence of a magnetic field on the separation of the boundary layer of a non-Newtonian MHD medium %J Comptes Rendus. Mécanique %D 2018 %P 807-814 %V 346 %N 9 %I Elsevier %R 10.1016/j.crme.2018.06.010 %G en %F CRMECA_2018__346_9_807_0
Regina R. Bulatova; Gregory A. Chechkin; Tatiana P. Chechkina; Vyacheslav N. Samokhin. On the influence of a magnetic field on the separation of the boundary layer of a non-Newtonian MHD medium. Comptes Rendus. Mécanique, Volume 346 (2018) no. 9, pp. 807-814. doi : 10.1016/j.crme.2018.06.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.06.010/
[1] The Prandtl system of equation in boundary layer theory, Sov. Math. Dokl., Volume 4 (1963), pp. 583-586
[2] On a system of equations in boundary layer theory, USSR Comput. Math. Math. Phys., Volume 3 (1963), pp. 650-673
[3] Mathematical Models in Boundary Layer Theory, Chapman & Hall, CRC, Boca Raton, FL, USA, 1999
[4] Boundary Layer of Non-Newtonian Fluids, Nauka Tekhnika, Minsk, 1966 (in Russian)
[5] Thin layer of a non-Newtonian fluid flowing on a rough surface and percolating through a perforated obstacle, J. Math. Sci. (N.Y.), Volume 189 (2013) no. 3, pp. 525-535
[6] Non-Newtonian Fluids, Pergamon Press, London, 1960
[7] Lectures on Theoretical Rheology, North-Holland, Amsterdam, 1960
[8] Existence and uniqueness theorems for the full three-dimensional Ericksen–Leslie system, Math. Models Methods Appl. Sci., Volume 27 (2017) no. 5, pp. 807-843
[9] The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, etc., 1969
[10] On modifications of Navier–Stokes equations for large gradients of velocities, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, Volume 7 (1968), pp. 126-154 (in Russian)
[11] Equations of the boundary layer for a modified Navier–Stokes system, J. Math. Sci. (N.Y.), Volume 179 (2011) no. 4, pp. 557-577
Cited by Sources:
☆ The paper was partially supported by RFBR grant 18-01-00046.
Comments - Policy