Comptes Rendus
CABARET solutions on graphics processing units for NASA jets: Grid sensitivity and unsteady inflow condition effect
Comptes Rendus. Mécanique, Volume 346 (2018) no. 10, pp. 948-963.

The GPU CABARET method for solving the Navier–Stokes equations coupled with the Ffowcs Williams–Hawkings scheme for far-field noise predictions is applied for conditions of the NASA SHJAR experiment corresponding to Set Point 3 and 7 in accordance with Tanna's classification. The questions addressed include the sensitivity of the flow and noise spectra solutions to the grid resolution and the inflow condition at the nozzle exit. To study the grid sensitivity, several “hand-made” multi-block curvilinear grids are considered along with a simple hanging-nodes-type grid that was automatically generated with OpenFOAM, whose solutions are cross-verified. To study the effect of the inflow jet condition, the flow and noise solutions based on the laminar inflow condition for Set Point 7 case are compared with the same based on modifying the interior nozzle geometry with a turbulence grid to generate the initial unsteadiness inside the nozzle so that both the centerline velocity fluctuations and the jet Mach number at the nozzle exit are preserved in accordance with the experiment. The numerical solutions obtained are compared with the experimental data and reference LES solutions available in the literature.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.07.004
Keywords: Jet noise, Large Eddy Simulation, GPU computing, CABARET scheme

Anton P. Markesteijn 1, 2; Sergey A. Karabasov 1, 2

1 School of Engineering and Material Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
2 GPU-prime Ltd, Cambridge, UK
@article{CRMECA_2018__346_10_948_0,
     author = {Anton P. Markesteijn and Sergey A. Karabasov},
     title = {CABARET solutions on graphics processing units for {NASA} jets: {Grid} sensitivity and unsteady inflow condition effect},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {948--963},
     publisher = {Elsevier},
     volume = {346},
     number = {10},
     year = {2018},
     doi = {10.1016/j.crme.2018.07.004},
     language = {en},
}
TY  - JOUR
AU  - Anton P. Markesteijn
AU  - Sergey A. Karabasov
TI  - CABARET solutions on graphics processing units for NASA jets: Grid sensitivity and unsteady inflow condition effect
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 948
EP  - 963
VL  - 346
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crme.2018.07.004
LA  - en
ID  - CRMECA_2018__346_10_948_0
ER  - 
%0 Journal Article
%A Anton P. Markesteijn
%A Sergey A. Karabasov
%T CABARET solutions on graphics processing units for NASA jets: Grid sensitivity and unsteady inflow condition effect
%J Comptes Rendus. Mécanique
%D 2018
%P 948-963
%V 346
%N 10
%I Elsevier
%R 10.1016/j.crme.2018.07.004
%G en
%F CRMECA_2018__346_10_948_0
Anton P. Markesteijn; Sergey A. Karabasov. CABARET solutions on graphics processing units for NASA jets: Grid sensitivity and unsteady inflow condition effect. Comptes Rendus. Mécanique, Volume 346 (2018) no. 10, pp. 948-963. doi : 10.1016/j.crme.2018.07.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.07.004/

[1] M.J. Lighthill On sound generated aerodynamically. I. General theory, Proc. R. Soc. Lond. A, Volume 211 (1952) no. 1107, pp. 564-587

[2] C.J. Moore The role of shear-layer instability waves in jet exhaust noise, J. Fluid Mech., Volume 80 (1977), pp. 321-367

[3] J.C. Lau; P.J. Morris; M. Fisher Measurements in subsonic and supersonic free jets using a laser velocimeter, J. Fluid Mech., Volume 93 (1979), pp. 1-27

[4] H.J. Hussein; S.P. Capp; W.K. George Velocity measurements in a high-Reynolds-number, momentum conserving, axisymmetric, turbulent jet, J. Fluid Mech., Volume 258 (1994), pp. 31-75

[5] M.L. Shur; P.R. Spalart; M.Kh. Strelets Noise prediction for increasingly complex jets. Part I: Methods and tests, Int. J. Aeroacoust., Volume 4 (2005) no. 3, pp. 213-246

[6] D. Bodony; S.K. Lele Current status of jet noise predictions using large-eddy simulation, AIAA J., Volume 46 (2008), pp. 364-380

[7] C. Bogey; O. Mardsen; C. Bailly Large-eddy simulation of the flow and acoustic fields of a Reynolds number 105 subsonic jet with tripped exit boundary layers, Phys. Fluids, Volume 23 (2011) no. 035104

[8] C. Bogey; O. Marsden; C. Bailly Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105, J. Fluid Mech., Volume 701 ( 25 June 2012 ), pp. 352-385

[9] G.A. Faranosov; V.M. Goloviznin; S.A. Karabasov; V.G. Kondakov; V.F. Kopiev; M.A. Zaitsev CABARET method on unstructured hexahedral grids for jet noise computation, Comput. Fluids, Volume 88 (2013), pp. 165-179

[10] H.K. Tanna An experimental study of jet noise part I: turbulent mixing noise, J. Sound Vib., Volume 50 (1977), pp. 405-428

[11] J. Bridges; M.P. Wernet The NASA Subsonic Jet Particle Image Velocimetry (PIV) Dataset, 2011 (NASA/TM-2011-216807)

[12] M. Angelino, H. Xia, M.A. Moratilla-Vega, G.J. Page, Far-field noise prediction of round and serrated jets with increasingly refined grids, in: Proc. 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France, 30 May–1 June 2016.

[13] D. Ingraham, J.E. Bridges, Validating a monotonically-integrated large eddy simulation code for subsonic jet acoustics, in: Proc. 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum (AIAA 2017-0456), Grapevine, TX, USA, 9–13 January 2017.

[14] S.J. Leib, D. Ingraham, J.E. Bridges, Evaluating source terms of the generalized acoustic analogy using the Jet Engine Noise REduction (JENRE) code, in: Proc. 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum (AIAA 2017-0459), Grapevine, TX, USA, 9–13 January 2017.

[15] H. Xia Turbulent jet characteristics for axisymmetric and serrated nozzles, Comput. Fluids, Volume 110 (2015), pp. 189-197

[16] J.A. Housman, G.-D. Stich, C.C. Kiris, J. Bridges, Jet noise prediction using hybrid RANS/LES with structured overset grids, in: Proc. 23rd AIAA/CEAS Aeroacoustics Conference 2017 (AIAA 2017-3213), Denver, CO, USA, 5–9 June 2017.

[17] M. Fuchs; C. Mockett; M. Shur; M. Strelets; J.C. Kok Single-stream round jet at M=0.9 (C. Mockett; W. Haase; D. Schwamborn, eds.), Proc. Go4Hybrid: Grey Area Mitigation for Hybrid RANS-LES Methods, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 134, Springer, Cham, Switzerland, 2018

[18] O. Marsden; C. Bogey; C. Bailly High-order curvilinear simulations of flows around non-Cartesian bodies, J. Comput. Acoust., Volume 13 (2005) no. 04, pp. 731-748

[19] G. Brès; F.E. Ham; J.W. Nichols; S.K. Lele Unstructured large-eddy simulations of supersonic jets, AIAA J., Volume 55 (2017) no. 4, pp. 1164-1184

[20] V. Semiletov, S.A. Karabasov, A. Chintagunta, A.P. Markesteijn, Empiricism-free noise calculation from LES solution based on Goldstein generalized acoustic analogy: volume noise sources and meanflow effects, in: Proc. 21st AIAA/CEAS Aeroacoustics Conference, AIAA AVIATION Forum (AIAA 2015-2536), Dallas, TX, USA, 22–26 June 2015.

[21] D. Casalino; S.K. Lele Lattice-Boltzmann simulation of coaxial jet noise generation, Proceedings of the Summer Program 2014, Center for Turbulence Research, Stanford, CA, USA, 2014

[22] A. Iserles Generalized leapfrog methods, IMA J. Numer. Anal., Volume 6 (1986), pp. 381-392

[23] P.L. Roe Linear bicharacteristic schemes without dissipation, SIAM J. Sci. Comput., Volume 19 (1998), pp. 1405-1427

[24] V.M. Goloviznin; A.A. Samarskii Difference approximation of convective transport with spatial splitting of time derivative, Math. Model., Volume 10 (1998), pp. 86-100

[25] S.A. Karabasov; V.M. Goloviznin Compact accurately boundary-adjusting high-resolution technique for fluid dynamics, J. Comput. Phys., Volume 228 (2009) no. 19, pp. 7426-7451

[26] S.A. Karabasov; V.M. Goloviznin New efficient high-resolution method for nonlinear problems in aeroacoustics, AIAA J., Volume 45 (2007) no. 12, pp. 2861-2871

[27] S.A. Karabasov; P.S. Berloff; V.M. Goloviznin CABARET in the ocean gyres, Ocean Model., Volume 30 (2009) no. 2, pp. 155-168

[28] A.V. Obabko; P.F. Fischer; T.J. Tautges; S. Karabasov; V.M. Goloviznin; M.A. Zaytsev; V.V. Chudanov; V.A. Pervichko; A.E. Aksenova CFD Validation in OECD/NEA T-Junction Benchmark, 2011 (ANL/NE-11/25)

[29] C. Fureby; F.F. Grinstein Large eddy simulation of high-Reynolds-number free and wall-bounded flows, J. Comput. Phys., Volume 181 (2002), pp. 68-97

[30] Y.A. Omelechenko; H. Karimabadi A time-accurate explicit multi-scale technique for gas dynamics, J. Comput. Phys., Volume 226 (2007), pp. 282-300

[31] V.A. Semiletov; S.A. Karabasov CABARET scheme with conservation-flux asynchronous time-stepping for nonlinear aeroacoustics problems, J. Comput. Phys., Volume 253 (2013) no. 15, pp. 157-165

[32] A.P. Markesteijn; V.A. Semiletov; S.A. Karabasov CABARET GPU Solver for Fast-Turn-Around Flow and Noise Calculations, 2015 (AIAA-2015-2223)

[33] A.P. Markesteijn; V.A. Semiletov; S.A. Karabasov GPU CABARET Solutions for the SILOET Jet Noise Experiment: Flow and Noise Modelling, 2016 (AIAA 2016-2967)

[34] A.P. Markesteijn; S.A. Karabasov GPU CABARET solver extension to handle complex geometries utilizing snappyHexMesh with asynchronous time stepping, 23rd AIAA/CEAS Aeroacoustics Conference, 2017

[35] A.P. Markesteijn, S.A. Karabasov, GPU CABARET solutions for the NASA SHJAR jet noise experiment: flow and noise modeling, in: 23rd AIAA/CEAS Aeroacoustics Conference, AIAA AVIATION Forum (AIAA 2017-3852).

[36] G.A. Bres; V. Jaunet; M. Le Rallic; P. Jordan; T. Colonius; S.K. Lele LES for Jet Noise: The Importance of Getting the Boundary Layer Right, 2015 (AIAA Paper 2015-2535)

[37] G.A. Bres, J.A. Nichols, S.K. Lele, F.E. Ham, R.H. Schlinker, R.A. Reba, J.C. Simonich, Unstructured large eddy simulation of a hot supersonic over-expanded jet with chevrons, in: Proc. 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), Colorado Springs, CO, USA, 4–6 June 2012.

[38] J.E. Ffowcs Williams; D.L. Hawkings Sound generation by turbulence and surfaces in arbitrary motion, Philos. Trans. R. Soc. Lond. A, Volume 264 (1969), pp. 321-342

[39] P. di Francescantonio A new boundary integral formulation for the prediction of sound radiation, J. Sound Vib., Volume 202 (1997) no. 4, pp. 491-509

[40] K.S. Brentner; F. Farassat Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces, AIAA J., Volume 36 (1998) no. 8, pp. 1379-1386

[41] P.D. Welch The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms, IEEE Trans. Audio Electroacoust., Volume AU-15 (1967), pp. 70-73

Cited by Sources:

Comments - Policy