A hybrid computational fluid dynamics (CFD) and computational aeroacoustics (CAA) method is used to compute the acoustic field of turbulent hot jets at a Reynolds number
Accepté le :
Publié le :
Mehmet Onur Cetin 1 ; Seong Ryong Koh 1 ; Matthias Meinke 1, 2 ; Wolfgang Schröder 1, 2
@article{CRMECA_2018__346_10_932_0, author = {Mehmet Onur Cetin and Seong Ryong Koh and Matthias Meinke and Wolfgang Schr\"oder}, title = {Computational analysis of exit conditions on the sound field of turbulent hot jets}, journal = {Comptes Rendus. M\'ecanique}, pages = {932--947}, publisher = {Elsevier}, volume = {346}, number = {10}, year = {2018}, doi = {10.1016/j.crme.2018.07.006}, language = {en}, }
TY - JOUR AU - Mehmet Onur Cetin AU - Seong Ryong Koh AU - Matthias Meinke AU - Wolfgang Schröder TI - Computational analysis of exit conditions on the sound field of turbulent hot jets JO - Comptes Rendus. Mécanique PY - 2018 SP - 932 EP - 947 VL - 346 IS - 10 PB - Elsevier DO - 10.1016/j.crme.2018.07.006 LA - en ID - CRMECA_2018__346_10_932_0 ER -
%0 Journal Article %A Mehmet Onur Cetin %A Seong Ryong Koh %A Matthias Meinke %A Wolfgang Schröder %T Computational analysis of exit conditions on the sound field of turbulent hot jets %J Comptes Rendus. Mécanique %D 2018 %P 932-947 %V 346 %N 10 %I Elsevier %R 10.1016/j.crme.2018.07.006 %G en %F CRMECA_2018__346_10_932_0
Mehmet Onur Cetin; Seong Ryong Koh; Matthias Meinke; Wolfgang Schröder. Computational analysis of exit conditions on the sound field of turbulent hot jets. Comptes Rendus. Mécanique, Jet noise modelling and control / Modélisation et contrôle du bruit de jet, Volume 346 (2018) no. 10, pp. 932-947. doi : 10.1016/j.crme.2018.07.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.07.006/
[1] Effect of Nozzle Exit Conditions on Subsonic Jet Noise, 2011 (AIAA Paper, 2011–2704)
[2] Effects of Inflow Conditions and Subgrid Model on LES for Turbulent Jets, 2005 (AIAA Paper, 2005–2925)
[3] Numerical study of eigenmode forcing effects on jet flow development and noise generation mechanisms, Phys. Fluids, Volume 21 (2009) no. 4
[4] Influence of nozzle-exit boundary-layer conditions on the flow and acoustic fields of initially laminar jets, J. Fluid Mech., Volume 663 (2010), pp. 507-538
[5] Identification of the effects of the nozzle-exit boundary-layer thickness and its corresponding Reynolds number in initially highly disturbed subsonic jets, Phys. Fluids, Volume 25 (2013) no. 5
[6] Current status of jet noise predictions using large-eddy simulation, AIAA J., Volume 46 (2008) no. 2, pp. 364-380
[7] On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets, Phys. Fluids, Volume 17 (2005) no. 8
[8] Noise prediction for increasingly complex jets. Part II: applications, Int. J. Aeroacoust., Volume 4 (2005) no. 3, pp. 247-266
[9] Turbulence and heat excited noise sources in single and coaxial jets, J. Sound Vib., Volume 329 (2010) no. 7, pp. 786-803
[10] Aeroacoustics of hot jets, J. Fluid Mech., Volume 516 (2004), pp. 39-82
[11] Transition to turbulence and noise radiation in heated coaxial jet flows, Phys. Fluids, Volume 28 (2016) no. 4
[12] Effect of Heating on Turbulent Density Fluctuations and Noise Generation from High Speed Jets, 2004 (AIAA Paper, 2004–3016)
[13] Computational analyses of offset-stream nozzles for noise reduction, J. Propuls. Power, Volume 25 (2009) no. 1, pp. 204-217
[14] An MDOE Assessment of Nozzle Vanes for High Bypass Ratio Jet Noise Reduction, 2006 (AIAA Paper, 2006–2543)
[15] Numerical analysis of the impact of the interior nozzle geometry on low Mach number jet acoustics, Flow Turbul. Combust., Volume 98 (2017) no. 2, pp. 417-443
[16] Offset Stream Technology Test – Summary of Results, 2007 (AIAA Paper, 2007–3664)
[17] Aerodynamics of fan flow deflectors for jet noise suppression, J. Propuls. Power, Volume 24 (2008) no. 3, pp. 437-445
[18] Fan flow deflection in simulated turbofan exhaust, AIAA J., Volume 44 (2006) no. 12, pp. 3088-3097
[19] Aerodynamic and Acoustic Optimization for Fan Flow Deflection, 2011 (AIAA Paper, 2011–1156)
[20] Aerodynamic performance of fan-flow deflectors for jet-noise reduction, J. Propuls. Power, Volume 28 (2012) no. 4, pp. 728-738
[21] Computation of high-speed coaxial jets with fan flow deflection, AIAA J., Volume 48 (2010) no. 10, pp. 2249-2262
[22] New insights into large eddy simulation, Fluid Dyn. Res., Volume 10 (1992) no. 4–6, pp. 199-228
[23] A comparison of second-and sixth-order methods for large-eddy simulations, Comput. Fluids, Volume 31 (2002) no. 4, pp. 695-718
[24] A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids, Comput. Methods Appl. Mech. Eng., Volume 200 (2011) no. 9, pp. 1038-1052
[25] An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows, J. Comput. Phys., Volume 311 (2016), pp. 62-86
[26] Massively parallel grid generation on HPC systems, Comput. Methods Appl. Mech. Eng., Volume 277 (2014), pp. 131-153
[27] An accurate moving boundary formulation in cut-cell methods, J. Comput. Phys., Volume 235 (2013), pp. 786-809
[28] Cut-cell method based large-eddy simulation of tip-leakage flow, Phys. Fluids, Volume 27 (2015) no. 7
[29] Hydrodynamic instability and shear layer effects in turbulent premixed combustion, Phys. Fluids, Volume 28 (2016) no. 1
[30] Computational analysis of nozzle geometry variations for subsonic turbulent jets, Comput. Fluids, Volume 136 (2016), pp. 467-484
[31] Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound, AIAA J., Volume 35 (1997) no. 4, pp. 740-742
[32] Acoustic perturbation equations based on flow decomposition via source filtering, J. Comput. Phys., Volume 188 (2003) no. 2, pp. 365-398
[33] Reformulation of Acoustic Entropy Source Terms, 2011 (AIAA Paper, 2011–2927)
[34] Second-order acoustic fields: streaming with viscosity and relaxation, Phys. Rev., Volume 86 (1952) no. 4, p. 497
[35] Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys., Volume 107 (1993) no. 2, pp. 262-281
[36] Low-dissipation and low-dispersion Runge–Kutta schemes for computational acoustics, J. Comput. Phys., Volume 124 (1996) no. 1, pp. 177-191
[37] LES-CAA coupling, Large-Eddy Simulations for Acoustics, Cambridge University Press, 2005
[38] On the simulation of trailing edge noise with a hybrid LES/APE method, J. Sound Vib., Volume 270 (2004) no. 3, pp. 509-524
[39] Collision rates of small ellipsoids settling in turbulence, J. Fluid Mech., Volume 758 (2014), pp. 686-701
[40] Computation of a high Reynolds number jet and its radiated noise using large eddy simulation based on explicit filtering, Comput. Fluids, Volume 35 (2006) no. 10, pp. 1344-1358
[41] Numerical analysis of the impact of exit conditions on low Mach number turbulent jets, Int. J. Heat Fluid Flow, Volume 67 (2017), pp. 1-12
[42] Acoustic sources and far-field noise of chevron and round jets, AIAA J., Volume 53 (2015) no. 9, pp. 2421-2436
[43] Jet noise: since 1952, Theor. Comput. Fluid Dyn., Volume 10 (1998) no. 1, pp. 393-405
[44] Juqueen: IBM Blue Gene/Q Supercomputer System at the Jülich Supercomputing Centre, J. Large-Scale Res. Facil., Volume 1 (2015) no. A1 | DOI
Cité par Sources :
Commentaires - Politique