Comptes Rendus
Computational analysis of exit conditions on the sound field of turbulent hot jets
Comptes Rendus. Mécanique, Volume 346 (2018) no. 10, pp. 932-947.

A hybrid computational fluid dynamics (CFD) and computational aeroacoustics (CAA) method is used to compute the acoustic field of turbulent hot jets at a Reynolds number Re=316,000 and a Mach number M=0.12. The flow field computations are performed by highly resolved large-eddy simulations (LES), from which sound source terms are extracted to compute the acoustic field by solving the acoustic perturbation equations (APE). Two jets are considered to analyze the impact of exit conditions on the resulting jet sound field. First, a jet emanating from a fully resolved non-generic nozzle is simulated by solving the discrete conservation equations. This computation of the jet flow is denoted free-exit-flow (FEF) formulation. For the second computation, the nozzle geometry is not included in the computational domain. Time averaged exit conditions, i.e. velocity and density profiles of the first formulation, plus a jet forcing in form of vortex rings are imposed at the inlet of the second jet configuration. This formulation is denoted imposed-exit-flow (IEF) formulation. The free-exit-flow case shows up to 50% higher turbulent kinetic energy than the imposed-exit-flow case in the jet near field, which drastically impacts noise generation. The FEF and IEF configurations reveal quite a different qualitative behavior of the sound spectra, especially in the sideline direction where the entropy source term dominates sound generation. This difference occurs since the noise sources generated by density and pressure fluctuations are not perfectly modeled by the vortex ring forcing method in the IEF solution. However, the total overall sound pressure level shows the same qualitative behavior for the FEF and IEF formulations. Towards the downstream direction, the sound spectra of the FEF and IEF solutions converge.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2018.07.006
Mots clés : Large-eddy simulation, Acoustic perturbation equations, Jet aeroacoustics, Multi shear-layer flow
Mehmet Onur Cetin 1 ; Seong Ryong Koh 1 ; Matthias Meinke 1, 2 ; Wolfgang Schröder 1, 2

1 Institute of Aerodynamics, RWTH Aachen University, Wüllnerstraße 5a, 52062 Aachen, Germany
2 Forschungszentrum Jülich, JARA – High-Performance Computing, 52425 Jülich, Germany
@article{CRMECA_2018__346_10_932_0,
     author = {Mehmet Onur Cetin and Seong Ryong Koh and Matthias Meinke and Wolfgang Schr\"oder},
     title = {Computational analysis of exit conditions on the sound field of turbulent hot jets},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {932--947},
     publisher = {Elsevier},
     volume = {346},
     number = {10},
     year = {2018},
     doi = {10.1016/j.crme.2018.07.006},
     language = {en},
}
TY  - JOUR
AU  - Mehmet Onur Cetin
AU  - Seong Ryong Koh
AU  - Matthias Meinke
AU  - Wolfgang Schröder
TI  - Computational analysis of exit conditions on the sound field of turbulent hot jets
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 932
EP  - 947
VL  - 346
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crme.2018.07.006
LA  - en
ID  - CRMECA_2018__346_10_932_0
ER  - 
%0 Journal Article
%A Mehmet Onur Cetin
%A Seong Ryong Koh
%A Matthias Meinke
%A Wolfgang Schröder
%T Computational analysis of exit conditions on the sound field of turbulent hot jets
%J Comptes Rendus. Mécanique
%D 2018
%P 932-947
%V 346
%N 10
%I Elsevier
%R 10.1016/j.crme.2018.07.006
%G en
%F CRMECA_2018__346_10_932_0
Mehmet Onur Cetin; Seong Ryong Koh; Matthias Meinke; Wolfgang Schröder. Computational analysis of exit conditions on the sound field of turbulent hot jets. Comptes Rendus. Mécanique, Volume 346 (2018) no. 10, pp. 932-947. doi : 10.1016/j.crme.2018.07.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.07.006/

[1] K.B.M.Q. Zaman Effect of Nozzle Exit Conditions on Subsonic Jet Noise, 2011 (AIAA Paper, 2011–2704)

[2] N. Andersson; L.-E. Eriksson; L. Davidson Effects of Inflow Conditions and Subgrid Model on LES for Turbulent Jets, 2005 (AIAA Paper, 2005–2925)

[3] F. Keiderling; L. Kleiser; C. Bogey Numerical study of eigenmode forcing effects on jet flow development and noise generation mechanisms, Phys. Fluids, Volume 21 (2009) no. 4

[4] C. Bogey; C. Bailly Influence of nozzle-exit boundary-layer conditions on the flow and acoustic fields of initially laminar jets, J. Fluid Mech., Volume 663 (2010), pp. 507-538

[5] C. Bogey; O. Marsden Identification of the effects of the nozzle-exit boundary-layer thickness and its corresponding Reynolds number in initially highly disturbed subsonic jets, Phys. Fluids, Volume 25 (2013) no. 5

[6] D.J. Bodony; S.K. Lele Current status of jet noise predictions using large-eddy simulation, AIAA J., Volume 46 (2008) no. 2, pp. 364-380

[7] D.J. Bodony; S.K. Lele On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets, Phys. Fluids, Volume 17 (2005) no. 8

[8] M. Shur; P. Spalart; M. Strelets Noise prediction for increasingly complex jets. Part II: applications, Int. J. Aeroacoust., Volume 4 (2005) no. 3, pp. 247-266

[9] S.R. Koh; W. Schröder; M. Meinke Turbulence and heat excited noise sources in single and coaxial jets, J. Sound Vib., Volume 329 (2010) no. 7, pp. 786-803

[10] K. Viswanathan Aeroacoustics of hot jets, J. Fluid Mech., Volume 516 (2004), pp. 39-82

[11] M. Gloor; S. Bühler; L. Kleiser Transition to turbulence and noise radiation in heated coaxial jet flows, Phys. Fluids, Volume 28 (2016) no. 4

[12] J. Panda; R.G. Seasholtz; K.A. Elam; A.F. Mielke; D.G. Eck Effect of Heating on Turbulent Density Fluctuations and Noise Generation from High Speed Jets, 2004 (AIAA Paper, 2004–3016)

[13] V.F. Dippold; L.E. Foster; M.R. Wiese Computational analyses of offset-stream nozzles for noise reduction, J. Propuls. Power, Volume 25 (2009) no. 1, pp. 204-217

[14] B. Henderson; T. Norum; J. Bridges An MDOE Assessment of Nozzle Vanes for High Bypass Ratio Jet Noise Reduction, 2006 (AIAA Paper, 2006–2543)

[15] M.O. Cetin; S.R. Koh; M. Meinke; W. Schröder Numerical analysis of the impact of the interior nozzle geometry on low Mach number jet acoustics, Flow Turbul. Combust., Volume 98 (2017) no. 2, pp. 417-443

[16] C. Brown; J. Bridges; B. Henderson Offset Stream Technology Test – Summary of Results, 2007 (AIAA Paper, 2007–3664)

[17] D. Papamoschou; F. Liu Aerodynamics of fan flow deflectors for jet noise suppression, J. Propuls. Power, Volume 24 (2008) no. 3, pp. 437-445

[18] D. Papamoschou Fan flow deflection in simulated turbofan exhaust, AIAA J., Volume 44 (2006) no. 12, pp. 3088-3097

[19] A.D. Johnson; J. Xiong; S. Rostamimonjezi; F. Liu; D. Papamoschou Aerodynamic and Acoustic Optimization for Fan Flow Deflection, 2011 (AIAA Paper, 2011–1156)

[20] J. Xiong; F. Liu; D. Papamoschou Aerodynamic performance of fan-flow deflectors for jet-noise reduction, J. Propuls. Power, Volume 28 (2012) no. 4, pp. 728-738

[21] J. Xiong; P. Nielsen; F. Liu; D. Papamoschou Computation of high-speed coaxial jets with fan flow deflection, AIAA J., Volume 48 (2010) no. 10, pp. 2249-2262

[22] J.P. Boris; F.F. Grinstein; E.S. Oran; R.L. Kolbe New insights into large eddy simulation, Fluid Dyn. Res., Volume 10 (1992) no. 4–6, pp. 199-228

[23] M. Meinke; W. Schröder; E. Krause; T. Rister A comparison of second-and sixth-order methods for large-eddy simulations, Comput. Fluids, Volume 31 (2002) no. 4, pp. 695-718

[24] D. Hartmann; M. Meinke; W. Schröder A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids, Comput. Methods Appl. Mech. Eng., Volume 200 (2011) no. 9, pp. 1038-1052

[25] L. Schneiders; C. Günther; M. Meinke; W. Schröder An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows, J. Comput. Phys., Volume 311 (2016), pp. 62-86

[26] A. Lintermann; S. Schlimpert; J. Grimmen; C. Günther; M. Meinke; W. Schröder Massively parallel grid generation on HPC systems, Comput. Methods Appl. Mech. Eng., Volume 277 (2014), pp. 131-153

[27] L. Schneiders; D. Hartmann; M. Meinke; W. Schröder An accurate moving boundary formulation in cut-cell methods, J. Comput. Phys., Volume 235 (2013), pp. 786-809

[28] A. Pogorelov; M. Meinke; W. Schröder Cut-cell method based large-eddy simulation of tip-leakage flow, Phys. Fluids, Volume 27 (2015) no. 7

[29] S. Schlimpert; A. Feldhusen; J. Grimmen; B. Roidl; M. Meinke; W. Schröder Hydrodynamic instability and shear layer effects in turbulent premixed combustion, Phys. Fluids, Volume 28 (2016) no. 1

[30] M.O. Cetin; V. Pauz; M. Meinke; W. Schröder Computational analysis of nozzle geometry variations for subsonic turbulent jets, Comput. Fluids, Volume 136 (2016), pp. 467-484

[31] J.B. Freund Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound, AIAA J., Volume 35 (1997) no. 4, pp. 740-742

[32] R. Ewert; W. Schröder Acoustic perturbation equations based on flow decomposition via source filtering, J. Comput. Phys., Volume 188 (2003) no. 2, pp. 365-398

[33] S.R. Koh; G. Geiser; W. Schröder Reformulation of Acoustic Entropy Source Terms, 2011 (AIAA Paper, 2011–2927)

[34] J.J. Markham Second-order acoustic fields: streaming with viscosity and relaxation, Phys. Rev., Volume 86 (1952) no. 4, p. 497

[35] C.K.W. Tam; J.C. Webb Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys., Volume 107 (1993) no. 2, pp. 262-281

[36] F.Q. Hu; M.Y. Hussaini; J.L. Manthey Low-dissipation and low-dispersion Runge–Kutta schemes for computational acoustics, J. Comput. Phys., Volume 124 (1996) no. 1, pp. 177-191

[37] W. Schröder; R. Ewert LES-CAA coupling, Large-Eddy Simulations for Acoustics, Cambridge University Press, 2005

[38] R. Ewert; W. Schröder On the simulation of trailing edge noise with a hybrid LES/APE method, J. Sound Vib., Volume 270 (2004) no. 3, pp. 509-524

[39] C. Siewert; R.P.J. Kunnen; W. Schröder Collision rates of small ellipsoids settling in turbulence, J. Fluid Mech., Volume 758 (2014), pp. 686-701

[40] C. Bogey; C. Bailly Computation of a high Reynolds number jet and its radiated noise using large eddy simulation based on explicit filtering, Comput. Fluids, Volume 35 (2006) no. 10, pp. 1344-1358

[41] M.O. Cetin; M. Meinke; W. Schröder Numerical analysis of the impact of exit conditions on low Mach number turbulent jets, Int. J. Heat Fluid Flow, Volume 67 (2017), pp. 1-12

[42] N.K. Depuru Mohan; A.P. Dowling; S.A. Karabasov; H. Xia; O. Graham; T.P. Hynes; P.G. Tucker Acoustic sources and far-field noise of chevron and round jets, AIAA J., Volume 53 (2015) no. 9, pp. 2421-2436

[43] C.K.W. Tam Jet noise: since 1952, Theor. Comput. Fluid Dyn., Volume 10 (1998) no. 1, pp. 393-405

[44] J.S. Centre Juqueen: IBM Blue Gene/Q Supercomputer System at the Jülich Supercomputing Centre, J. Large-Scale Res. Facil., Volume 1 (2015) no. A1 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Estimation of aerodynamic noise generated by forced compressible round jets

Mohamed Maidi

C. R. Méca (2006)


CABARET solutions on graphics processing units for NASA jets: Grid sensitivity and unsteady inflow condition effect

Anton P. Markesteijn; Sergey A. Karabasov

C. R. Méca (2018)


A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data

Florent Margnat; Vasilis Ioannou; Sylvain Laizet

C. R. Méca (2018)