In this work, we propose a cost-effective approach allowing one to evaluate the acoustic field generated by a turbulent jet. A turbulence-resolving simulation of an incompressible turbulent round jet is performed for a Reynolds number equal to
Accepté le :
Publié le :
Florent Margnat 1 ; Vasilis Ioannou 2 ; Sylvain Laizet 2
@article{CRMECA_2018__346_10_903_0, author = {Florent Margnat and Vasilis Ioannou and Sylvain Laizet}, title = {A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data}, journal = {Comptes Rendus. M\'ecanique}, pages = {903--918}, publisher = {Elsevier}, volume = {346}, number = {10}, year = {2018}, doi = {10.1016/j.crme.2018.07.007}, language = {en}, }
TY - JOUR AU - Florent Margnat AU - Vasilis Ioannou AU - Sylvain Laizet TI - A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data JO - Comptes Rendus. Mécanique PY - 2018 SP - 903 EP - 918 VL - 346 IS - 10 PB - Elsevier DO - 10.1016/j.crme.2018.07.007 LA - en ID - CRMECA_2018__346_10_903_0 ER -
%0 Journal Article %A Florent Margnat %A Vasilis Ioannou %A Sylvain Laizet %T A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data %J Comptes Rendus. Mécanique %D 2018 %P 903-918 %V 346 %N 10 %I Elsevier %R 10.1016/j.crme.2018.07.007 %G en %F CRMECA_2018__346_10_903_0
Florent Margnat; Vasilis Ioannou; Sylvain Laizet. A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data. Comptes Rendus. Mécanique, Jet noise modelling and control / Modélisation et contrôle du bruit de jet, Volume 346 (2018) no. 10, pp. 903-918. doi : 10.1016/j.crme.2018.07.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.07.007/
[1] Parametric testing of chevrons on single flow hot jets, 10th AIAA/CEAS Aeroacoustics Conference, 2004, p. 2824
[2] R.L. Balzer, Segmented mixing device having chevrons for exhaust noise reduction in jet engines, September 2 2003, US Patent 6,612,106.
[3] Large eddy simulation for jet noise: the importance of getting the boundary layer right, 21st AIAA/CEAS Aeroacoustics Conference, 2015, p. 2535
[4] Educing the source mechanism associated with downstream radiation in subsonic jets, J. Fluid Mech., Volume 710 (2012), p. 606
[5] Wave packets and turbulent jet noise, Annu. Rev. Fluid Mech., Volume 45 (2013), pp. 173-195
[6] Axisymmetric superdirectivity in subsonic jets, J. Fluid Mech., Volume 704 (2012), pp. 388-420
[7] On the growth and propagation of linear instability waves in compressible turbulent jets, Phys. Fluids, Volume 21 (2009) no. 5
[8] Shear-layer pressure fluctuations and superdirective acoustic sources, J. Fluid Mech., Volume 220 (1990), pp. 355-368
[9] Wavepackets in the velocity field of turbulent jets, J. Fluid Mech., Volume 730 (2013), pp. 559-592
[10] Two-point coherence of wave packets in turbulent jets, Phys. Rev. Fluids, Volume 2 (2017) no. 2
[11] Scattering of turbulent-jet wavepackets by a swept trailing edge, J. Acoust. Soc. Amer., Volume 140 (2016) no. 6, pp. 4350-4359
[12] On the effect of numerical errors in large eddy simulation of turbulent flows, J. Comput. Phys., Volume 131 (1997), pp. 310-322
[13] A DNS study of jet control with microjets using an immersed boundary method, Int. J. Comput. Fluid Dyn., Volume 28 (2014) no. 6–10, pp. 393-410
[14] Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., Volume 103 (1992), pp. 16-42
[15] High-order compact schemes for incompressible flows: a simple and efficient method with the quasi-spectral accuracy, J. Comput. Phys., Volume 228 (2009) no. 16, pp. 5989-6015
[16] Incompact3d, a powerful tool to tackle turbulence problems with up to
[17] Stirring and scalar transfer by grid-generated turbulence in the presence of a mean scalar gradient, J. Fluid Mech., Volume 764 (2015), pp. 52-75
[18] High-fidelity simulations of the lobe-and-cleft structures and the deposition map in particle-driven gravity currents, Phys. Fluids, Volume 27 (2015) no. 5
[19] Direct numerical simulation of the interaction between a turbulent boundary layer and a wall-attached cube, Phys. Fluids, Volume 29 (2017)
[20] LES of a turbulent jet impinging on a heated wall using high-order numerical schemes, Int. J. Heat Fluid Flow, Volume 50 (2014), pp. 177-187
[21] Numerical investigation of plasma-controlled turbulent jets for mixing enhancement, Int. J. Heat Fluid Flow, Volume 70 (2018), pp. 193-205
[22] Skin-friction drag reduction in a channel flow with streamwise-aligned plasma actuators, Int. J. Heat Fluid Flow, Volume 66 (2017), pp. 83-94
[23] Generation of turbulent inflow data for spatially-developing boundary layer simulations, J. Comput. Phys., Volume 140 (1998) no. 2, pp. 233-258
[24] The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows, SIAM J. Sci. Comput., Volume 20 (1999) no. 4, pp. 1365-1393
[25] Robust and accurate open boundary conditions for incompressible turbulent jets and plumes, Comput. Fluids, Volume 86 (2013), pp. 284-297
[26] On the outflow boundary condition for external incompressible flows: a new approach, J. Comput. Phys., Volume 206 (2005), pp. 661-683
[27] Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation, J. Comput. Phys., Volume 230 (2011), pp. 3270-3275
[28] Numerical dissipation vs. subgrid-scale modelling for large eddy simulation, J. Comput. Phys., Volume 337 (2017), pp. 252-274
[29] Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal., Volume 26 (1989) no. 1, pp. 30-44
[30] A spectral vanishing viscosity method for large-eddy simulations, J. Comput. Phys., Volume 163 (2000) no. 1, pp. 22-50
[31] The “preferred mode” of the axisymmetric jet, J. Fluid Mech., Volume 110 (1981), pp. 39-71
[32] Perturbed free shear layers, Annu. Rev. Fluid Mech., Volume 16 (1984) no. 1, pp. 365-422
[33] On sound generated aerodynamically. I. General theory, Proc. R. Soc. A, Volume 223 (1952), pp. 1-32
[34] Computation of jet mixing noise due to coherent structures: the plane jet case, J. Fluid Mech., Volume 335 (1997) no. 1, pp. 261-304
[35] Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9, J. Fluid Mech., Volume 438 (2001), p. 277
[36] Low-frequency sound sources in high-speed turbulent jets, J. Fluid Mech., Volume 617 (2008), p. 231
[37] An iterative algorithm for computing aeroacoustic integrals with application to the analysis of free shear flow noise, J. Acoust. Soc. Amer., Volume 128 (2010) no. 4, pp. 1656-1667
[38] Numerical study of Mach number and thermal effects on sound radiation by a mixing layer, Int. J. Aeroacoust., Volume 11 (2012) no. 5–6, pp. 555-580
[39] A Wave Model for Sound Generation in Circular Jets, 1970
[40] On turbulence and noise of an axisymmetric shear flow, J. Fluid Mech., Volume 70 (1975) no. 1, pp. 179-205
[41] Noise-source turbulence statistics and the noise from a Mach 0.9 jet, Phys. Fluids, Volume 15 (2003) no. 6, pp. 1788-1799
[42] Acoustic gain of a turbulent jet, American Physical Society, University of Colorado, Boulder, CA, USA, November 1972 (1972)
[43] The noise from the large-scale structure of a jet, J. Fluid Mech., Volume 84 (1978) no. 4, pp. 673-694
[44] On compressibility assumptions in aeroacoustic integrals: a numerical study with subsonic mixing layers, J. Acoust. Soc. Amer., Volume 135 (2014), pp. 3252-3263
[45] Directivity of acoustic emissions from wave packets to the far field, J. Fluid Mech., Volume 640 (2009), pp. 165-186
[46] Jittering wavepacket models for subsonic jet noise, J. Sound Vib., Volume 330 (2011), pp. 4474-4492
[47] The influence of a pressure wavepacket's characteristics on its acoustic radiation, J. Acoust. Soc. Amer., Volume 137 (2015) no. 4, pp. 3178-3189
[48] Handbook of Mathematical Functions, Dover, New York, 1965
[49] Hybrid prediction of the aerodynamic noise radiated by a rectangular cylinder at incidence, Comput. Fluids, Volume 109 (2015) no. 4, pp. 13-26
Cité par Sources :
Commentaires - Politique