Comptes Rendus
A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data
Comptes Rendus. Mécanique, Volume 346 (2018) no. 10, pp. 903-918.

In this work, we propose a cost-effective approach allowing one to evaluate the acoustic field generated by a turbulent jet. A turbulence-resolving simulation of an incompressible turbulent round jet is performed for a Reynolds number equal to 460,000 thanks to the massively parallel high-order flow solver Incompact3d. Then a formulation of Lighthill's solution is derived, using an azimuthal Fourier series expansion and a compactness assumption in the radial direction. The formulation then reduces to a line source theory, which is cost-effective to implement and evaluate. The accuracy of the radial compactness assumption, however, depends on the Strouhal number, the Mach number, the observation elevation angle, and the radial extent of the source. Preliminary results are showing that the proposed method approaches the experimental overall sound pressure level by less than 4 dB for aft emission angles below 50°.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2018.07.007
Mots clés : Turbulence, Large-eddy simulations, Acoustic predictions
Florent Margnat 1 ; Vasilis Ioannou 2 ; Sylvain Laizet 2

1 Institut Pprime, CNRS, Université de Poitiers, ISAE–ENSMA, 86962 Futuroscope Chasseneuil, France
2 Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK
@article{CRMECA_2018__346_10_903_0,
     author = {Florent Margnat and Vasilis Ioannou and Sylvain Laizet},
     title = {A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {903--918},
     publisher = {Elsevier},
     volume = {346},
     number = {10},
     year = {2018},
     doi = {10.1016/j.crme.2018.07.007},
     language = {en},
}
TY  - JOUR
AU  - Florent Margnat
AU  - Vasilis Ioannou
AU  - Sylvain Laizet
TI  - A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 903
EP  - 918
VL  - 346
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crme.2018.07.007
LA  - en
ID  - CRMECA_2018__346_10_903_0
ER  - 
%0 Journal Article
%A Florent Margnat
%A Vasilis Ioannou
%A Sylvain Laizet
%T A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data
%J Comptes Rendus. Mécanique
%D 2018
%P 903-918
%V 346
%N 10
%I Elsevier
%R 10.1016/j.crme.2018.07.007
%G en
%F CRMECA_2018__346_10_903_0
Florent Margnat; Vasilis Ioannou; Sylvain Laizet. A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data. Comptes Rendus. Mécanique, Volume 346 (2018) no. 10, pp. 903-918. doi : 10.1016/j.crme.2018.07.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.07.007/

[1] J. Bridges; C. Brown Parametric testing of chevrons on single flow hot jets, 10th AIAA/CEAS Aeroacoustics Conference, 2004, p. 2824

[2] R.L. Balzer, Segmented mixing device having chevrons for exhaust noise reduction in jet engines, September 2 2003, US Patent 6,612,106.

[3] G.A. Bres; V. Jaunet; M. Le Rallic; P. Jordan; T. Colonius; S.K. Lele Large eddy simulation for jet noise: the importance of getting the boundary layer right, 21st AIAA/CEAS Aeroacoustics Conference, 2015, p. 2535

[4] F. Kerhervé; P. Jordan; A.V.G. Cavalieri; J. Delville; C. Bogey; D. Juvé Educing the source mechanism associated with downstream radiation in subsonic jets, J. Fluid Mech., Volume 710 (2012), p. 606

[5] P. Jordan; T. Colonius Wave packets and turbulent jet noise, Annu. Rev. Fluid Mech., Volume 45 (2013), pp. 173-195

[6] A.V.G. Cavalieri; P. Jordan; T. Colonius; Y. Gervais Axisymmetric superdirectivity in subsonic jets, J. Fluid Mech., Volume 704 (2012), pp. 388-420

[7] P.K. Ray; L.C. Cheung; S.K. Lele On the growth and propagation of linear instability waves in compressible turbulent jets, Phys. Fluids, Volume 21 (2009) no. 5

[8] D.G. Crighton; P. Huerre Shear-layer pressure fluctuations and superdirective acoustic sources, J. Fluid Mech., Volume 220 (1990), pp. 355-368

[9] A.V.G. Cavalieri; D. Rodriguez; P. Jordan; T. Colonius; Y. Gervais Wavepackets in the velocity field of turbulent jets, J. Fluid Mech., Volume 730 (2013), pp. 559-592

[10] V. Jaunet; P. Jordan; A.V.G. Cavalieri Two-point coherence of wave packets in turbulent jets, Phys. Rev. Fluids, Volume 2 (2017) no. 2

[11] S. Piantanida; V. Jaunet; J. Huber; W.R. Wolf; P. Jordan; A.V.G. Cavalieri Scattering of turbulent-jet wavepackets by a swept trailing edge, J. Acoust. Soc. Amer., Volume 140 (2016) no. 6, pp. 4350-4359

[12] A.G. Kravchenko; P. Moin On the effect of numerical errors in large eddy simulation of turbulent flows, J. Comput. Phys., Volume 131 (1997), pp. 310-322

[13] R. Gautier; S. Laizet; E. Lamballais A DNS study of jet control with microjets using an immersed boundary method, Int. J. Comput. Fluid Dyn., Volume 28 (2014) no. 6–10, pp. 393-410

[14] S.K. Lele Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., Volume 103 (1992), pp. 16-42

[15] S. Laizet; E. Lamballais High-order compact schemes for incompressible flows: a simple and efficient method with the quasi-spectral accuracy, J. Comput. Phys., Volume 228 (2009) no. 16, pp. 5989-6015

[16] S. Laizet; N. Li Incompact3d, a powerful tool to tackle turbulence problems with up to O(105) computational cores, Int. J. Numer. Methods Fluids, Volume 67 (2011) no. 11, pp. 1735-1757

[17] S. Laizet; J.C. Vassilicos Stirring and scalar transfer by grid-generated turbulence in the presence of a mean scalar gradient, J. Fluid Mech., Volume 764 (2015), pp. 52-75

[18] L.F.R. Espath; L.C. Pinto; S. Laizet; J.H. Silvestrini High-fidelity simulations of the lobe-and-cleft structures and the deposition map in particle-driven gravity currents, Phys. Fluids, Volume 27 (2015) no. 5

[19] C. Diaz Daniel; S. Laizet; J.C. Vassilicos Direct numerical simulation of the interaction between a turbulent boundary layer and a wall-attached cube, Phys. Fluids, Volume 29 (2017)

[20] T. Dairay; V. Fortuné; E. Lamballais; L.E. Brizzi LES of a turbulent jet impinging on a heated wall using high-order numerical schemes, Int. J. Heat Fluid Flow, Volume 50 (2014), pp. 177-187

[21] V. Ioannou; S. Laizet Numerical investigation of plasma-controlled turbulent jets for mixing enhancement, Int. J. Heat Fluid Flow, Volume 70 (2018), pp. 193-205

[22] O. Mahfose; S. Laizet Skin-friction drag reduction in a channel flow with streamwise-aligned plasma actuators, Int. J. Heat Fluid Flow, Volume 66 (2017), pp. 83-94

[23] T.S. Lund; X. Wu; K.D. Squires Generation of turbulent inflow data for spatially-developing boundary layer simulations, J. Comput. Phys., Volume 140 (1998) no. 2, pp. 233-258

[24] J. Nordström; N. Nordin; D. Henningson The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows, SIAM J. Sci. Comput., Volume 20 (1999) no. 4, pp. 1365-1393

[25] J. Craske; M. van Reeuwijk Robust and accurate open boundary conditions for incompressible turbulent jets and plumes, Comput. Fluids, Volume 86 (2013), pp. 284-297

[26] N. Hasan; S.F. Anwer; S. Sanghi On the outflow boundary condition for external incompressible flows: a new approach, J. Comput. Phys., Volume 206 (2005), pp. 661-683

[27] E. Lamballais; V. Fortuné; S. Laizet Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation, J. Comput. Phys., Volume 230 (2011), pp. 3270-3275

[28] T. Dairay; E. Lamballais; S. Laizet; J.C. Vassilicos Numerical dissipation vs. subgrid-scale modelling for large eddy simulation, J. Comput. Phys., Volume 337 (2017), pp. 252-274

[29] E. Tadmor Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal., Volume 26 (1989) no. 1, pp. 30-44

[30] G.S. Karamanos; G.E. Karniadakis A spectral vanishing viscosity method for large-eddy simulations, J. Comput. Phys., Volume 163 (2000) no. 1, pp. 22-50

[31] A.K.M. Fazle Hussain; K.B.M.Q. Zaman The “preferred mode” of the axisymmetric jet, J. Fluid Mech., Volume 110 (1981), pp. 39-71

[32] C.-M. Ho; P. Huerre Perturbed free shear layers, Annu. Rev. Fluid Mech., Volume 16 (1984) no. 1, pp. 365-422

[33] M.J. Lighthill On sound generated aerodynamically. I. General theory, Proc. R. Soc. A, Volume 223 (1952), pp. 1-32

[34] F. Bastin; P. Lafon; S. Candel Computation of jet mixing noise due to coherent structures: the plane jet case, J. Fluid Mech., Volume 335 (1997) no. 1, pp. 261-304

[35] J.B. Freund Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9, J. Fluid Mech., Volume 438 (2001), p. 277

[36] D.J. Bodony; S.K. Lele Low-frequency sound sources in high-speed turbulent jets, J. Fluid Mech., Volume 617 (2008), p. 231

[37] F. Margnat; V. Fortuné An iterative algorithm for computing aeroacoustic integrals with application to the analysis of free shear flow noise, J. Acoust. Soc. Amer., Volume 128 (2010) no. 4, pp. 1656-1667

[38] C. Moser; E. Lamballais; F. Margnat; V. Fortuné; Y. Gervais Numerical study of Mach number and thermal effects on sound radiation by a mixing layer, Int. J. Aeroacoust., Volume 11 (2012) no. 5–6, pp. 555-580

[39] Alfons Michalke A Wave Model for Sound Generation in Circular Jets, 1970

[40] A. Michalke; H.V. Fuchs On turbulence and noise of an axisymmetric shear flow, J. Fluid Mech., Volume 70 (1975) no. 1, pp. 179-205

[41] J.B. Freund Noise-source turbulence statistics and the noise from a Mach 0.9 jet, Phys. Fluids, Volume 15 (2003) no. 6, pp. 1788-1799

[42] S.C. Crow Acoustic gain of a turbulent jet, American Physical Society, University of Colorado, Boulder, CA, USA, November 1972 (1972)

[43] J.E.F. Williams; A.J. Kempton The noise from the large-scale structure of a jet, J. Fluid Mech., Volume 84 (1978) no. 4, pp. 673-694

[44] F. Margnat; X. Gloerfelt On compressibility assumptions in aeroacoustic integrals: a numerical study with subsonic mixing layers, J. Acoust. Soc. Amer., Volume 135 (2014), pp. 3252-3263

[45] D. Obrist Directivity of acoustic emissions from wave packets to the far field, J. Fluid Mech., Volume 640 (2009), pp. 165-186

[46] A.V.G. Cavalieri; P. Jordan; A. Agarwal; Y. Gervais Jittering wavepacket models for subsonic jet noise, J. Sound Vib., Volume 330 (2011), pp. 4474-4492

[47] R. Serré; J.-C. Robinet; F. Margnat The influence of a pressure wavepacket's characteristics on its acoustic radiation, J. Acoust. Soc. Amer., Volume 137 (2015) no. 4, pp. 3178-3189

[48] M. Abramovitz; I.A. Stegun Handbook of Mathematical Functions, Dover, New York, 1965

[49] F. Margnat Hybrid prediction of the aerodynamic noise radiated by a rectangular cylinder at incidence, Comput. Fluids, Volume 109 (2015) no. 4, pp. 13-26

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Large eddy simulation of serration effects on an ultra-high-bypass-ratio engine exhaust jet

Zhong-Nan Wang; James Tyacke; Paul Tucker

C. R. Méca (2018)


CABARET solutions on graphics processing units for NASA jets: Grid sensitivity and unsteady inflow condition effect

Anton P. Markesteijn; Sergey A. Karabasov

C. R. Méca (2018)


Computational analysis of exit conditions on the sound field of turbulent hot jets

Mehmet Onur Cetin; Seong Ryong Koh; Matthias Meinke; ...

C. R. Méca (2018)