Comptes Rendus
Acceleration and wall pressure fluctuations generated by an incompressible jet in installed configuration
Comptes Rendus. Mécanique, Volume 346 (2018) no. 10, pp. 919-931.

In this work, the cross-statistics of acceleration and wall pressure fluctuations generated by an incompressible jet interacting with a tangential flat-plate are presented. The results are derived from an experimental test campaign on a laboratory-scale model involving simultaneous velocity and wall pressure measurements. The pressure footprint of the jet on the surface was measured through a cavity-mounted microphone array, whereas pointwise velocity measurements were carried out by a hot wire anemometer. The time derivative of the velocity signal has been taken as an estimation of the local acceleration of the jet. The multivariate statistics between acceleration and wall pressure are achieved through cross-correlations and cross-spectra, highlighting that the causality relation is more significant in the potential core where the Kelvin–Helmholtz instability is dominant. The application of a conditional sampling procedure based on wavelet transform allowed us to educe the acceleration flow structures related to the energetic wall-pressure events. The analysis revealed that, unlike the velocity, the acceleration signatures were detected only for positions where the jet had not yet impinged on the plate, their shape being related to a convected wavepacket structure.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.07.008
Mots clés : Fluid mechanics, Jets, Aeroacoustics

Matteo Mancinelli 1; Roberto Camussi 2

1 Institut Pprime – CNRS, Université de Poitiers, ENSMA – Département Fluides, Thermique et Combustion, 11, boulevard Marie-et-Pierre-Curie, 86962 Chasseneuil-du-Poitou, Poitiers, France
2 Università degli Studi Roma Tre, Dipartimento di Ingegneria, Via della Vasca Navale 79, 00146 Rome, Italy
@article{CRMECA_2018__346_10_919_0,
     author = {Matteo Mancinelli and Roberto Camussi},
     title = {Acceleration and wall pressure fluctuations generated by an incompressible jet in installed configuration},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {919--931},
     publisher = {Elsevier},
     volume = {346},
     number = {10},
     year = {2018},
     doi = {10.1016/j.crme.2018.07.008},
     language = {en},
}
TY  - JOUR
AU  - Matteo Mancinelli
AU  - Roberto Camussi
TI  - Acceleration and wall pressure fluctuations generated by an incompressible jet in installed configuration
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 919
EP  - 931
VL  - 346
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crme.2018.07.008
LA  - en
ID  - CRMECA_2018__346_10_919_0
ER  - 
%0 Journal Article
%A Matteo Mancinelli
%A Roberto Camussi
%T Acceleration and wall pressure fluctuations generated by an incompressible jet in installed configuration
%J Comptes Rendus. Mécanique
%D 2018
%P 919-931
%V 346
%N 10
%I Elsevier
%R 10.1016/j.crme.2018.07.008
%G en
%F CRMECA_2018__346_10_919_0
Matteo Mancinelli; Roberto Camussi. Acceleration and wall pressure fluctuations generated by an incompressible jet in installed configuration. Comptes Rendus. Mécanique, Volume 346 (2018) no. 10, pp. 919-931. doi : 10.1016/j.crme.2018.07.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.07.008/

[1] J. Huber; M. Omais; A. Vuillemin; R. Davy Characterization of installation effects for HBPR engine part IV: assessment of jet acoustics, 15th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2009-3371, American Institute of Aeronautics and Astronautics, 2009

[2] J. Huber; G. Drochon; A. Pintado-Peno; F. Cléro; G. Bodard Large-scale jet noise testing, reduction and methods validation EXEJET: 1. project overview and focus on installation, 20th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2014-3032, American Institute of Aeronautics and Astronautics, 2014

[3] D. Papamoschou; S. Mayoral Experiments on shielding of jet noise by airframe surfaces, 15th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2009-3326, American Institute of Aeronautics and Astronautics, 2009

[4] G.G. Podboy Jet-surface interaction test: phased array noise source localization results, ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, 2012, pp. 381-414

[5] A.V.G. Cavalieri; P. Jordan; W.R. Wolf; Y. Gervais Scattering of wavepackets by a flat plate in the vicinity of a turbulent jet, J. Sound Vib., Volume 333 (2014) no. 24, pp. 6516-6531

[6] S. Piantanida; V. Jaunet; J. Huber; W.R. Wolf; P. Jordan; A.V.G. Cavalieri Scattering of turbulent-jet wavepackets by a swept trailing edge, J. Acoust. Soc. Am., Volume 140 (2016) no. 6, pp. 4350-4359

[7] J. Vera; J.L.T. Lawrence; R.H. Self; M. Kingan The prediction of the radiated pressure spectrum produced by jet-wing interaction, 21st AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2015-2216, American Institute of Aeronautics and Astronautics, 2015

[8] A. Di Marco; R. Camussi; M. Bernardini; S. Pirozzoli Wall pressure coherence in supersonic turbulent boundary layers, J. Fluid Mech., Volume 732 (2013), pp. 445-456

[9] A. Di Marco; M. Mancinelli; R. Camussi Pressure and velocity measurements of an incompressible moderate Reynolds number jet interacting with a tangential flat plate, J. Fluid Mech., Volume 770 (2015), pp. 247-272

[10] M. Mancinelli; A. Di Marco; R. Camussi Cross-statistical and wavelet analysis of velocity and wall-pressure fields in jet-surface interaction, 22nd AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2016-2861, American Institute of Aeronautics and Astronautics, 2016

[11] M. Mancinelli; A. Di Marco; R. Camussi Multi-variate and conditioned statistics of velocity and wall pressure fluctuations induced by a jet interacting with a flat-plate, J. Fluid Mech., Volume 823 (2017), pp. 134-165

[12] K. Hanjalić; R. Mullyadzhanov On spatial segregation of vortices and pressure eddies in a confined slot jet, Phys. Fluids, Volume 27 (2015) no. 3

[13] M. Mancinelli; T. Pagliaroli; A. Di Marco; R. Camussi; T. Castelain Wavelet decomposition of hydrodynamic and acoustic pressures in the near field of the jet, J. Fluid Mech., Volume 813 (2017), pp. 716-749

[14] R. Camussi; S. Grizzi Statistical analysis of the pressure field in the near region of a M=0.5 circular jet, Int. J. Aeroacoust., Volume 13 (2014) no. 1–2, pp. 169-181

[15] L. Chatellier; J. Fitzpatrick Spatio-temporal correlation analysis of turbulent flows using global and single-point measurements, Exp. Fluids, Volume 38 (2005) no. 5, pp. 563-575

[16] C. Bogey; O. Marsden; C. Bailly Effects of moderate Reynolds numbers on subsonic round jets with highly disturbed nozzle-exit boundary layers, Phys. Fluids, Volume 24 (2012) no. 10

[17] K.B.M.Q. Zaman Effect of initial boundary-layer state on subsonic jet noise, AIAA J., Volume 50 (2012) no. 8, pp. 1784-1795

[18] C. Bogey; O. Marsden; C. Bailly Large-eddy simulation of the flow and acoustic fields of a Reynolds number 105 subsonic jet with tripped exit boundary layers, Phys. Fluids, Volume 23 (2011) no. 3

[19] R. Camussi; G. Guj Experimental analysis of intermittent coherent structures in the near field of a high Re turbulent jet flow, Phys. Fluids, Volume 11 (1999) no. 2, pp. 423-431

[20] C. Torrence; G.P. Compo A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., Volume 79 (1998) no. 1, pp. 61-78

[21] M. Farge Wavelet transforms and their applications to turbulence, Annu. Rev. Fluid Mech., Volume 24 (1992) no. 1, pp. 395-458

[22] S.D. Meyers; B.G. Kelly; J.J. O'Brien An introduction to wavelet analysis in oceanography and meteorology: with application to the dispersion of Yanai waves, Mon. Weather Rev., Volume 121 (1993) no. 10, pp. 2858-2866

[23] C. Meneveau Analysis of turbulence in the orthonormal wavelet representation, J. Fluid Mech., Volume 232 (1991), pp. 469-520

[24] R. Camussi; J. Grilliat; G. Caputi-Gennaro; M.C. Jacob Experimental study of a tip leakage flow: wavelet analysis of pressure fluctuations, J. Fluid Mech., Volume 660 (2010), pp. 87-113

[25] T. Pagliaroli; M. Mancinelli; G. Troiani; U. Iemma; R. Camussi Fourier and wavelet analyses of intermittent and resonant pressure components in a slot burner, J. Sound Vib., Volume 413 (2018), pp. 205-224

[26] R. Camussi; G. Guj Orthonormal wavelet decomposition of turbulent flows: intermittency and coherent structures, J. Fluid Mech., Volume 348 (1997), pp. 177-199

[27] T. Suzuki; T. Colonius Instability waves in a subsonic round jet detected using a near-field phased microphone array, J. Fluid Mech., Volume 565 (2006), pp. 197-226

[28] R. Camussi; M. Mancinelli; A. Di Marco Intermittency and stochastic modeling of hydrodynamic pressure fluctuations in the near field of compressible jets, Int. J. Heat Fluid Flow, Volume 68 (2017), pp. 180-188

[29] A.V.G. Cavalieri; P. Jordan; A. Agarwal; Y. Gervais Jittering wave-packet models for subsonic jet noise, J. Sound Vib., Volume 330 (2011) no. 18, pp. 4474-4492

[30] M. Farge; K. Schneider; O. Pannekoucke; R. Nguyen Van Yen Multiscale representations: fractals, self-similar random processes and wavelets, Handbook of Environmental Fluid Dynamics, vol. 2, CRC Press, 2012 (chapter 23)

[31] K. Sasaki; A.V.G. Cavalieri; P. Jordan; O.T. Schmidt; T. Colonius; G.A. Brès High-frequency wavepackets in turbulent jets, J. Fluid Mech., Volume 830 (2017)

[32] P.J. Morris; K.B.M.Q. Zaman Velocity measurements in jets with application to noise source modeling, J. Sound Vib., Volume 329 (2010) no. 4, pp. 394-414

[33] V. Jaunet; P. Jordan; A.V.G. Cavalieri Two-point coherence of wave packets in turbulent jets, Phys. Rev. Fluids, Volume 2 (2017) no. 2

[34] M. Mancinelli; T. Pagliaroli; A. Di Marco; R. Camussi; T. Castelain; O. Léon Hydrodynamic and acoustic wavelet-based separation of the near-field pressure of a compressible jet, 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France, 30 May–1 June 2016, AIAA Paper 2016-2864, American Institute of Aeronautics and Astronautics, 2016

[35] M. Mancinelli; T. Pagliaroli; R. Camussi; T. Castelain On the hydrodynamic and acoustic nature of pressure proper orthogonal decomposition modes in the near field of a compressible jet, J. Fluid Mech., Volume 836 (2018), pp. 998-1008

Cited by Sources:

Comments - Politique